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Abstract  

While individual cancers have been extensively researched in terms of prognostic genes, 

comprehensive studies comparing these across different cancer types remain scarce. 

Proper cancer classification into subtypes is pivotal for accurate diagnosis and effective 

treatment strategies. This study delves into gene co-expression networks across five 

cancer types using patient-to-patient correlation network analysis and Weighted Gene 

Correlation Network Analysis (WGCNA), utilizing data from UC Irvine. We conduct 

a thorough comparison of network characteristics such as degree, centrality, and 

betweenness for each cancer type. Additionally, we employ multinomial logistic 

regression to pinpoint a crucial subset of genes. Our research provides insights into the 

unique and overlapping gene expression patterns among various cancer types. 

I. INTRODUCTION 
Cancer describes a collection of diseases that share some common 

characteristics, particularly unregulated cell growth. They also vary 

widely in terms of mortality rate, treatment options, and prevalence in 

the population. Accurate diagnosis of cancer type is essential to decide 

treatment options, therapy and prognoses. However, some cancers are 

difficult to distinguish based on a single test1. Gene expression 

microarray technology provides precise information for cancer 

prognosis and treatment and has been used to categorize cancers into 

subgroups2. Current classification methods include nearest prototype 

classifier by defining subset of genes that best characterize each class3, 

supervised classification algorithms to identify gene expression 

signature, and the use of combined algorithms4. 

These methods have experienced moderate success, so clearly the 

methods are identifying relevant statistical differences in the tumor 

types in order to classify them correctly. Digging one level deeper, we 

are interested to explore the statistical differences between tumors, 
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tying them to phenotype differences in disease outcomes. Using this 

data-driven approach, we aim to understand the variation within 

tumors of the same type as well as the consistent differentiating features 

that distinguish each tumor type. 

Tumor Classification Background 
Khan et al.1 explore the use of neural network classification models to 

classify cancer subtypes taking cDNA expression data as the input. 

Their analysis was specific to small blue-cell tumors (SBCTs) which can 

be further classified into neuroblastoma (NB), rhabdomyosarcoma 

(RMS), non-Hodgkin lymphoma (NHL) and the Ewing family of tumors 

(EWS). Correct classification into subtypes is critical to selecting the 

optimal course of treatment. Usual methods for tumor classification 

often use spectroscopy, but SBCTs are challenging to classify visually. 

There have been many attempts to use geneexpression data to aid in 

classification, but so far none have been proven to be effective in 

identifying cancers that belong to several categories. 

They started with a panel of 6567 genes from which to find meaningful 

features. In order to make the dimensionality of the data more 

manageable, they eliminated genes that had expression levels below a 

threshold. With the remaining 2308 genes, they performed PCA to 

further reduce the dimensionality, taking the largest 10 components 

which accounted for 63% of the variation. After training on these 

features, their model was able to fit all of the 63 samples from their 

training set. To identify the most important genes, the authors altered 

each of the locations to measure the overall classifications sensitivity to 

that gene. After identifying the most important genes, the authors 

performed multidimensional scaling (MDS) to visualize the clear 

separation between cancers. 

When they tested the models ability to classify new samples, they were 

pleased to be able to classify all the cancer types correctly. 

Unfortunately, they were unable to reach the level of 95% confidence 

level in the diagnosis that they were targeting. This highlights the 

challenge of using machine learning methods in the medical field, since 

clinical use needs highly reliable AI systems. This study motivates 

further work of this kind with other disease types and larger data sets. 

Also, this result of a reasonably successful classification method 

motivates our analysis of the statistical properties of the different tumor 

gene expression profiles, from which these classifiers form decision 

boundaries. 

Network Methods Background 
Specifying features in genetics is a challenge because there are often 

complicated interactions between genes. To understand these 
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relationships researchers have used network models. Juan A. Botia et 

al.5 analyzed 1126 genes relating to 25 subtypes of Mendelian 

neurological disease defined by Genomics England (March 2017) 

together with 154 gene-specific features capturing genetic variation, 

gene structure and tissue-specific expression and co-expression. He 

developed a technique to identify the gene mutations that can lead to a 

neurological disorders. Random samples were selected with no disease 

association to develop decision tree models for each subtype. Within the 

disorder subtypes, network models were used to improve the predictive 

power. 

Another instance of network approaches in genomes, Yang et al.6 

applied the weighted correlation network analysis (WGCNA) method 

to construct a gene coexpression network. In this study, they primarily 

investigated the prognostic genes that distinguish between cancers. 

They investigated these genes with three distinct levels of depth 

properties: specific genes, gene modules, and the system holistically. At 

the gene level, they found that network properties could distinguish 

prognostic genes from other genes. More specifically, using Fisher’s 

exact test, they were able to conclude that prognostic genes tend not be 

hubs in the co-expression network. On the gene modules level, they 

discovered that prognostic genes are enriched significantly. Third, on 

the system level, some prognostic modules are conserved across tumour 

types. 

II. PRELIMINARY METHODS 

Dataset Description 
The dataset is provided by University of California at Irvine and is 

located here. The data includes 801 samples, each with 20,532 gene 

positions. Each sample vector contains the RNA-Seq gene expression 

levels. Each sample in the dataset corresponds to a particular tumor 

type. Every sample is one of five types: breast invasive carcinoma 

(BRCA), kidney renal clear cell carcinoma (KIRC), colon 

adenocarcinoma (COAD), lung adenocarcinoma (LUAD), and prostate 

adenocarcinoma (PRAD). 

Understanding the data 

 
(a) 2D PCA data projection (b) 3D PCA data projection 

https://archive.ics.uci.edu/ml/datasets/gene+expression+cancer+RNA-Seq
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A preliminary analysis of our data is shown in Fig. 1a. Not unusual in 

the genomics setting, we run into the curse of dimensionality, making 

our 801×20,532-dimensional matrix difficult to visualize. We 

performed Principal Component Analysis on our data set and plotted 

the projection of our data on the 2 principal components with the largest 

corresponding eigenvalues in Figure 1a, and the projection of our data 

on the 3 principal components with the larges eigenvalues in Figure 1b. 

Prior to performing the eigenvector decomposition, we preprocess our 

data by subtracting the column mean from the each entry. The result is 

the matrix X with dimension 801×20,532 with each column having 

mean 0. Taking the eigenvector decomposition we get X = V ΛV T, 

where Λ is a diagonal matrix of the eigenvalues (sorted such that the 

largest eigenvalue is in the top left) and V has the corresponding 

eigenvectors as its columns. Taking the first d columns of V, we get Td 

= XVd, where T has dimension n × d. 

We compute T2 and T3 and plot the results. In both of the plots, each 

point was colored according to what type of cancer it represents. This 

further validates our intuitions that the each cancer type has particular 

features that distinguish it from the others. 

Variance of Tumor Types in Reduced Dimension 
We aim to understand how the various tumor types differ, both in 

statistical and phenotypic terms. The previous PCA results show that 

projecting the samples onto the first two or three principal components 

lead to a reasonably clean separation. Interestingly, some cancer types 

appear to be clustered more tightly together in this lower dimensional 

space, while others appear to be more loosely dispersed. Also, it is 

interesting to note which pairs of tumor types appear closer together in 

this space. To quantify both of these notions, we fit a Gaussian mixture 

model to the PCA-transformed points. Using T2 from the previous 

section, we fit a five Gaussian mixture that appears to closely 

approximate the true labeling of the points. Sampling from a Gaussian 

mixture can be thought of as a two step process. First, it involves 

sampling from a multinomial distribution with parameters π (similar to 

an unfair dice). The result of the first step determines which Gaussian 

to sample from in the second step. Therefore, the conditional probability 

of the coordinates of a sample, given it is a particular cancer type c, is 

distributed according to ). The second step is simply to sample 

from that Gaussian. Gaussian mixture models are fit using the 

expectation-maximization (EM) algorithm, where the objective is to 

maximize the loglikelihood of generating the training data. Fitting this 

model results in the parameters π,µ,Σ for each type of cancer. 

Assuming that this fit is reasonable, we can quantify the notions of 

homogeneity within a tumor type by inspecting the covariance matrix 
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of the Gaussian corresponding to that cluster of samples. Because we 

are interested in the variance along the axis of the principal components, 

we constrain the Gaussians to be oriented along those axes (forcing the 

covariance matrices to be diagonal). We get the following results where 

the vector is ordered [LUAD, PRAD, KIRC, COAD, BRCA]: 

 

 
The model was able to fit the data reasonably well, which can be seen 

in Figure 2. For example, the weights π are nearly the same distribution 

as the true labels which are: 0. . Interestingly, 

we see that 

KIRC has the largest variance in the first principal component and 

BRCA has the largest variance in the second principal component. 

Overall it appears that KIRC is the most dispersed cancer type, since it 

has largest variance on average over the 2-D space. This can be 

evidenced in Figure 2, seeing that there are several samples that are 

more than 2 standard deviations away from the cluster mean. COAD 

and PRAD are the most concentrated, suggesting that those samples 

are more homogeneous. 

Note, that our model is not a perfect fit. Comparing our fitted GMM 

model to the 2-D projection of the data in Figure 1a, we see that some 

COAD samples are found within the LUAD cluster. This GMM model 

does not explain this feature of the data, motivating the use of other 

methods to understand the gene expression profiles of these cancer 

types. 
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FIG. 2: Above is the visualization of the gaussian mixture model fit to 

explain the distribution of the samples in the 2 dimensional space 

specified by the first principal components. PRAD is blue, LUAD is 

purple, BRCA is yellow, KIRC is teal, and COAD is green. 

Stochastic Neighbor Embedding 

In addition to PCA, we perform t-distributed stochastic neighbor 

embedding to our data. tSNE is a probabilistic approach to place objects 

from high-dimensional space into low-dimensional space so as to 

preserve the identity of the neighbors. Prior to tSNE, stochastic 

neighbor embedding (SNE) was proposed, which used the same general 

approach by placed a Gaussian on each object in high-dimensional 

space. This resulted in the “crowding problem” where many points 

would be mapped together in the center. To overcome this problem, 

Hinton et al.7 proposed tSNE which has larger tails and a steeper drop 

moving away from the mean (within close range). Both methods are fit 

by minimizing the KL divergence between the low and high 

dimensional probabilities of picking a particular neighbor. Intuitively, 

this method keeps “nearby” points in high dimension close to each other 

in low dimensional space, while keeping separated points relatively far 

apart in the low dimensional space. In this case tSNE is able to separate 

the tumor types with high precision (notably better than PCA). This 

result supports our intuition that different cancer types are statistically 

distinguishable. For the rest of the paper, we aim to characterize those 

statistical differences more precisely. 
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FIG. 3: tSNE on our data gives the following wellseparated clusters 

Hierarchical Clustering 
Hierarchical clustering of gene expression is a popular mechanism to 

cluster genes with similar expression patterns together. This clustering 

mechanism involves calculation of distance between two gene vectors 

to find the similarity between them. The dendrogram was sliced at a 

height of 370 to find five clusters in particular. Figure 4 demonstrates 

the samples clustered into five clusters where each cancer type is 

majorly clustered into just one cluster. There seems to be one of the 

clusters that consists of more than one cancer type, signifying that in 

some patients the distance between the gene vectors is close enough. 

These cancer types are BRCA, LUAD and COAD. From figure 2 also it 

could be seen that these three cancer types are close to each other. 

 
FIG. 4: Hierarchical clustering of the gene data set where pink is KIRC, 

green is COAD, purple is BRCA, teal is PRAD, and orange is LUAD. 
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III. NETWORK ANALYSIS 

A.Patient-to-Patient Correlation Network 
In order to understand the relationships between the samples in our 

data set, we constructed a network with each sample representing a 

node. The edges between S samples are determined by the level of the 

correlation between the G × 1 dimensional gene expression vectors. We 

start with our data matrix A which is S × G. Our correlation coefficients 

are defined as, 

. 

Given the correlation ρi,j between gene expression vector for sample i 

with the gene expression vector for sample j, we define a threshold 

value, drawing an edge between sample i and sample j if the correlation 

is statistically significant. We determine whether a correlation 

coefficient is significant using the Fisher transformation, which 

converts the distribution of Pearson’s correlation coefficients to a 

normal distribution. This transformation takes the following form: 

 
Using the transformed correlation coefficients we can obtain a p-value 

from the Z-score, since they correspond to the normal distribution. We 

chose the 5% significance level to draw our edges in this graph. Figure 

5 shows the degree distributions of the networks created by the 

mechanism discussed above for each cancer type. The degree 

distributions are left skewed suggesting that there are many high 

degree nodes among all the 801 patients. This also helps us conclude 

that the change in gene expression levels is highly similar for patients 

within one cancer type. Furthermore, the centrality measures are 

summarized in Table I. These measures suggest that there are certain 

patients that are central to the network corresponding to the cancer 

type, and thus are representative samples. We expect that adding more 

patients to the network would change the degree distributions and 

centralities of each patient. Then, depending on the degree measures of 

the new patient relative to patients close to this new patient who were 

already present in the network, we should be able to classify these 

patients into groups that would require similar therapies. 
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(a) BRCA (b) KIRC 

 
(c) LUAD (d) COAD (e) PRAD 

FIG. 5: Degree distribution of network for each cancer type 

Cancer Degree Eigenvector Pagerank 

PRAD 34,158,275,390 34,158,275,390 34 

BRCA 99 111 99 

LUAD 229 229 229 

KIRC 423,591 376,591 376 

COAD 26,237,264,665 665 237,264,665 

TABLE I: Table summarizing nodes with max. Centralities. 

B. Weighted Gene Co-expression Network Analysis 
A commonly used technique to analyze such data sets is to create a 

Weighted Gene Co-expression Network8,9. This is a graph which has 

genes as nodes and the edge is given between two nodes represents the 

correlation between the two nodes that the edge joins. In order to build 

such a network, we start by first splitting our data set based on cancer 

type and then proceed with the correlation computation as described 

above. 
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For the matrix containing the gene expressions for each subset of our 

data, we compute the Pearson correlation matrix, as shown above and 

then use that as our preliminary adjacency matrix. Once we have 

computed the matrix, we build the network by adding all the nodes, but 

only draw edges if the correlation is above a value of ρX,Y > 0.8. This 

threshold was chosen based on Fisher exact test leads to a significance 

level of around 5%. Additionally, it yields graphs that are sparse enough 

to visualize, though also dense enough that will allow us to make 

accurate computations. The networks resulting from this method are 

shown in Figure 6. It is worth noting here that creating such large 

networks, plotting and computing the centrality measures proved to be 

very computationally intensive, as they all had above 20,000 nodes and 

between 40,000 and 200,000 edges. Even when using a powerful server 

(courtesy of the MIT Math Dep.), the algorithms took hours to run for 

each of the networks. 

 
(a) Breast cancer graph (b) Kidney cancer graph 

 
(c) Lung cancer (d) Colon cancer (e) Prostate cangraph graph cer 

graph 

FIG. 6: WGCNs for each cancer type 
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It is interesting to note that even when only plotting the edges above 

the 0.8 correlation threshold, the graphs seem very dense. This is 

partially caused by the fact that some genes are naturally correlated and 

would be connected in the graph anyways. A way to go around this 

would be to use the partial correlation matrix as the adjacency matrix 

instead. The partial correlation would effectively condition on the rest 

of the genes, resulting in a more sparse network. However computing 

the partial correlation proved to be much harder computationally, or 

even impossible. 

Once having the graphs, we first looked at the graph statistics. The 

basic statistics are summarized in Table II. Furthermore, we have 

plotted the histograms of the degree distributions in Figure 7. We can 

see that that the distributions seem to follow the power law. There seem 

to be many nodes that have low degrees. 

Network descriptions 

Cancer 

Type 

# 

Nodes 

# 

Edges 

Avg. 

Degree 

BRCA 20,259 43,475 4.28 

KIRC 20,262 70,219 6.93 

LUAD 20,251 58,963 5.82 

COAD 20,227 201,408 19.91 

PRAD 20,252 171,008 16.89 

TABLE II: Basic statistics of the networks 

 
(a) BRCA (b) KIRC 
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(c) LUAD (d) COAD (e) PRAD 

FIG. 7: Degree histogram for each WGCN 

After creating those graphs, we computed some centrality measures, 

such as betweenness centrality, degree centrality and pagerank 

centrality. The results we got are summarized in tables Table III 

through Table VII, where we can see the gene numbers that ranked 

higher for each of the centrality measures we computed. 

PRAD centralities 

Order Degree Pagerank Betweenness 

1 14,974 1,671 3,068 

2 6,799 15,985 5,177 

3 14,643 13,761 9,525 

4 5,177 19,487 19,322 

5 11,709 13,119 9,427 

TABLE III: Centralities of PRAD WGCN 

LUAD centralities 

Order Degree Pagerank Betweenness 

1 19,819 10,462 17,124 

2 19,582 7,749 13,269 

3 19,196 11,394 7,502 

4 18,922 19,401 11,432 

5 18,918 9 10,982 

TABLE IV: Centralities of LUAD WGCN 

BRCA centralities 

Order Degree Pagerank Betweenness 

1 15,512 14,974 19,862 

2 14,376 17,430 4,749 
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3 3,356 16,274 14,974 

4 8,355 19,847 20,355 

5 1,139 715 1,511 

TABLE V: Centralities of BRCA WGCN 

KIRC centralities 

Order Degree Pagerank Betweenness 

1 6,799 1,363 15,147 

2 2,111 18,173 19,309 

3 6,022 2,124 17,805 

4 3,267 1,298 5,330 

5 17,791 3,913 13,650 

TABLE VI: Centralities of KIRC WGCN 

COAD centralities 

Order Degree Pagerank Betweenness 

1 19,375 12,509 1,213 

2 6,259 12,402 16,556 

3 18,822 5,280 16,463 

4 3,997 4 5,198 

5 19,862 15,139 713 

TABLE VII: Centralities of COAD WGCN 

From this analysis, we can see what the most ”important” genes are for 

each cancer type, based on their centralities. The genes with the highest 

centralities will be the most prominent in patients with the respective 

type of cancer, producing an outsize effect on the overall gene 

expression. We could then try to map each of the gene numbers to the 

actual gene name by ordering the gene sequence and finding the gene 

corresponding to each index number. From there we could research the 

function of that gene. We expect the function of the genes with the 

highest centrality in each cancer type to be somehow related to that 

organ in the body. 

Furthermore, it is interesting to see that it is not the case that the top 5 

genes are the same in each centrality measures. This happens because 

each centrality measure is computed differently and will lead to different 

results. Moreover, there is a very large amount of genes many of whom 

have very similar values for their centrality scores which means that 

even though one gene ranking highly in one centrality measure could 

have a very high centrality score in a different measure, it might still 

not make it in the “top 5”. 
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Using the list of the gene names and mapping that to the index given 

to us, we can find what gene name each gene index number corresponds 

to. Then we can search on the National Center for Biotechnology 

Information (NCBI), we can find what exactly each gene does and where 

it is most expressed. For example, the gene with the highest pagerank 

centrality in LUAD (lung cancer) is gene #10,462 which corresponds 

to gene ”MACF1 23499”. NCBI tells us that this gene ”encodes a large 

protein which is a member of a family of proteins that form bridges 

between different cytoskeletal elements”. Furthermore when we see in 

general this gene is mostly expressed in lung tissue, as shown in figure 

8. Furthermore gene #17,124 (highest betweenness in lung cancer) or 

”SPEN 23013” is a transcriptional repressor, which would make sense 

to have high centrality that regulates multiple genes expression that 

related to cancer. 

 
FIG. 8: Gene expression comparisonAdditionally, the gene with the 

highest degree centrality in colon cancer (VILL 50853), shows most 

expression in the stomach area, intestines and colon, as shown in 

Figure 9. 
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FIG. 9: Gene expression comparison 

IV. CLUSTERS COMPARISON 

A. Identifying the Critical Subset of Genes 
We fit a multinomial logistic regression model to classify our data, 

estimating coefficients for each gene. Analyzing these coefficients, we 

can determine whether that gene is a statistically significant 

determinant of a particular cancer type. Multinomial logistic regression 

is the generalization of logistic regression to multiple categories. Since 

we do not have normal samples in our dataset, we use BRCA samples to 

indicate a baseline, since it is the plurality of our samples. Fitting this 

model, we get both coefficients and standard errors, and each number 

corresponding to a model equation. For example, the first row (COAD) 

for the gene# is regressed to the equation. 

 

The way to interpret this regression is that β means one unit increase 

in gene# is associated with the decrease of probability in being COAD 

instead of BRCA in the amount of β. To be more specific, the ratio of 

the probability of choose one outcome category over the probability of 

choose the baseline category is the righthand side linear equation 

exponentiated. 
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Thus, β are relative risk ratios for a unit change of predictor variable. 

Since we have 801 samples data, this should provide a reasonably 

accurate estimate through regression. We also got standard deviation 

from the regression processes (for the coefficient) P-values were 

calculated according to t-tests H0 : β = 0 vs.HA : β 6= 0. After we got 

the P-values for all cancer types based on breast cancer over 20532 

genes. We chose the significance level to be 0.005 and delete the genes 

with P-values below this threshold in all 4 cancer types. The further 

analysis is based on this small dataset. The −log(p) vs. gene# were 

plotted (known as Manhattan plots) for each type of cancer. 

FIG. 10: Log(p) vs. Gene# of 4 cancer types COAD,KIRC, LUAD, 

PRAD. Red line (log(p)=2.3) is the threshold. Genes below this 

threshold were removed. 

By choosing a threshold of p=0.005, log(p)=2.3. We removed data 

below the red line in the plot. However, according to the plots there are 

still lots of genes to be analyzed. Interestingly, there are two narrow 

blank spaces shown in all the plots and those parts may suggest that P 

value are all large, and the cancer types has no relationship with those 

genes. Thus, those genes can either be genes related to this cancer (and 

are similar regulated in all cancer types) or they can be genes unrelated 

to this cancer (similar expressed for all people). This method helped to 

reduce the set to 1075 genes, which we used for the following analysis. 

FIG.11:Histogramofgenesexpressionlevelsin
Adown-,Bnormal-,Cover-
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B. Clustering by Gene Expression Levels 
Now with the smaller dataset, we want to analyze the expression level 

of genes among different cancer types, specifically we focused on LUAD 

and PRAD. They are chosen since they have similar sample size. Before 

any further analysis, the gene expressions were normalized according 

to the average and standard deviation of that specific gene expression 

in all cancer types. 

The expression levels distributed according to the histograms in 

LUAD, PRAD. 

FIG. 12: Histogram of genes expression levels in PRAD. a down-, b 

normal-, c over-, d highly expressed. 

According to the graph, we think the expression could be grouped into 

5 groups, group A: (-10,-2), group B: (-2,2), group C: (2, 8), group D: 

more than 8, with other NA values to be group 0. This is consistent 

with the down-regulated genes (compared with other cancer types), 

normal-expressed genes, slightly over-expressed genes, highly over-

expressed genes. (This could be changed according to the tissue type to 

make it more biological meaningful.) 

C. Conserved of Gene Expression Levels in LUAD and PRAD 

According to the groups, an adjacency matrix is generated with 1 at aij 

if both gene i and gene j are in same group, otherwise 0. This is then 

used to generate network. We expected to see all the genes in same 

group would be fully connected with each other, and a function were 

used to separate the connected components apart. The networks of 

LUAD and PRAD were shown as following. 

 
FIG. 13: LUAD Network with gene in same label(A B C D see 

Histogram) fully connected. 
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FIG. 14: PRAD Network with gene in same label(a b c d see 

Histogram) fully connected with color of the nodes consistent with 

LUAD labels 

The nodes are colored according to the expression level in LUAD 

cancer: group A as red, B as yellow, C as black and D as blue (consistent 

with their labels in LUAD histogram). The graphs suggest that in 

general, the genes expressed highly in LUAD are distributed evenly in 

PRAD, and especially group B and group C are mixed evenly. Probably 

because the threshold choose is not significant. However, there are some 

preservation of the expression patterns. 

V. DISCUSSION AND FURTHER WORK 

Rank Type New 

Cases 

% Deadliest 

1 Lung 2,093,876 12.3 1 

2 Breast 2,088,849 12.3 3 

3 Colorectal 1,800,977 10.6 2 

4 Prostate 1,276,106 7.5 5 

5 Stomach 1,033,701 6.1 n/a 

TABLE VIII: Global cancer incidence10 where % refers to the percent 

of new cases of cancer diagnosed in the US in 2018 and deadliest refers 

to the ranking for that cancer in causing the most deaths in 2018 

Cancer is one of the most significant public health challenges, 

particularly in the developed world. In this project, we examined 4 of 

the top 5 (and 5 of the top 15) cancer types in terms of new cases 

diagnosed in 2018, evidenced by Table VIII. In addition to being 

prevalent, the cancer types studied here correspond to 4 of the top 5 

cancer types contributing to deaths in America. The prevalence of 

datasets and computational tools has revolutionized nearly all fields of 

science, particularly biology. Transferring successful models from the 

statistical modeling literature to this dataset has allowed us to validate 

existing scientific conclusions and identify areas which warrant further 

study. We were pleased to find that the cancer types can be clustered 

into groups using out-ofthe-box approaches for dimensionality 

reduction. Since each cancer type is different in many ways, it is 

reassuring to see those differences reflected in our statistical approach. 

Other portions of our report highlight areas that could be worth 

exploring further from the biomedical perspective. For example, in 

section 2.3, it was seen that the 4 most prevalent and deadly cancer 

types appeared clustered more closely together than to KIRC. It would 

be interesting to explore how this matches the intuition of oncologists, 

who might have a sense of which cancer types are more similar to each 
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other. Through our network approaches we were able to identify genes 

of interest. We are optimistic that these centrality measure of our 

network correspond to biological insight and that these network 

approaches can serve as a spotlight to help guide researchers to study 

potentially high impact areas of the genome in a more efficient manner. 

VI. CONCLUSION 
In this report we were able to summarize the similarities and differences 

of 801 samples of 5 cancer types from a dataset generated by UC Irvine. 

After performing an exploratory analysis, we were surprised to see that 

the gene expression profiles could be easily clustered. This motivated 

further analysis to characterize interactions between patients and genes 

that were indicative of biological differences between the cancer types. 

To characterize these relationships we constructed networks: one that 

represented the relationships between patients and another that aimed 

to characterize the relationships between genes. Using standard 

network analysis measures (such as centrality statistics) we highlighted 

genes that appear to be highly influential for each cancer type, such as 

MACF1 23499 for LUAD and VILL 50853 for COAD. Both these genes 

appear to plausible genes involved with these cancer types, validating 

elements of our approach. These networks approaches and expression 

analyses applied gene expression data aim to motivate for future work 

to understand the biological implications of standard statistical 

measures in gene expression profiles. 
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