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Abstract  
Cardiotocograms (CTGs) are widely used in assessing fetal health and 

preventing child and maternal mortality. This study aims to develop machine 

learning models for predicting fetal health based on features extracted from 

CTG exams. The dataset used contains 2126 records, classified by expert 

obstetricians into three classes: Normal, Suspect, and Pathological. To address 

the challenges associated with feature selection and class imbalance, univariate 

feature selection (SelectKBest) and SMOTE RandomOverSampler techniques 

were employed. Various machine learning algorithms including Logistic 

Regression, k-Nearest Neighbors (kNN), Support Vector Machines (SVM), 

Decision Tree, Extra Trees, Random Forest, Gradient Boosting, and Neural 

Network Multi-Layer Perceptron (NN MLP) were evaluated. The results 

demonstrate promising performance across multiple metrics. The Random 

Forest model achieved the highest accuracy (95.77%), recall (95.77%), precision 

(95.87%), F1-score (95.81%), and MCC score (88.58%). The Extra Trees, 

Gradient Boosting, and NN MLP models also exhibited strong performance. 

Furthermore, key factors contributing to the prediction of fetal well-being 

were identified. These included the rate of accelerations, abnormal short-term 

and long-term variability of fetal heart rate, as well as the characteristics of the 

histogram constructed from fetal heart rate values (width, mean, and variance). 

Additionally, the trend or histogram tendency over time emerged as a 

significant predictor, capturing changes and patterns associated with potential 

complications. 
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Introduction 
Fetal mortality, although a significant public health concern, is often 

overlooked in discussions surrounding global health issues. The loss of 

a fetus before birth not only devastates families emotionally, but it also 

has far-reaching implications for maternal health and the overall well-

being of communities [1]. The consequences of fetal mortality extend 

beyond the immediate loss, affecting societies at both individual and 

societal levels. 

Firstly, fetal mortality has a profound impact on families and 

communities. The loss of a fetus is a traumatic event for expectant 

parents, who had eagerly anticipated the arrival of their child. The 

emotional toll of such a loss can be long-lasting, leading to feelings of 

grief, depression, and a sense of emptiness. Families may struggle to 

cope with the loss and require support from healthcare providers and 
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social networks [2]. Furthermore, the social fabric of communities can 

be disrupted as families grapple with the aftermath of fetal mortality, 

leading to a decrease in social cohesion and well-being. 

Secondly, fetal mortality is closely intertwined with maternal health. 

The risk factors associated with fetal mortality often overlap with those 

affecting maternal health, including inadequate access to prenatal care, 

chronic health conditions, substance abuse, and socioeconomic 

disparities. Addressing fetal mortality requires a comprehensive 

approach that prioritizes maternal well-being, ensuring early and 

regular prenatal care, promoting healthy behaviors during pregnancy, 

and providing support systems for expectant mothers. By focusing on 

improving maternal health, we can significantly reduce the risk of fetal 

mortality and improve overall community health outcomes [3]. 

Lastly, the impact of fetal mortality extends beyond individual families 

and maternal health to broader societal consequences. High rates of 

fetal mortality are indicative of deeper health system challenges, 

including limited access to healthcare services, insufficient 

infrastructure, and inadequate training of healthcare professionals [4]–

[7].  

Cardiotocograms (CTGs) have emerged as an invaluable tool in the 

field of obstetrics, playing a crucial role in assessing fetal health and 

ensuring the well-being of both the child and the mother. 

These devices measure various parameters, including fetal heart rate, 

fetal movement, and uterine contractions, to ensure the well-being of 

both the unborn child and the mother. CTGs are a simple and cost-

accessible option that has greatly improved the quality of prenatal care 

and reduced the risks associated with childbirth [8]. 

Fetal heart rate monitoring is one of the key aspects of CTGs. By 

continuously tracking the heart rate, healthcare professionals can 

identify any abnormalities or irregularities that may indicate distress or 

compromised oxygen supply to the fetus. This information allows for 

timely intervention and necessary medical measures to be taken to 

safeguard the health of the unborn baby. Additionally, CTGs also 

monitor fetal movement, providing valuable insights into the overall 

activity and vitality of the fetus. Changes in movement patterns can be 

indicative of fetal well-being, and any deviations from the normal range 

can prompt immediate medical attention. 

Furthermore, CTGs enable the assessment of uterine contractions 

during labor. By measuring the frequency, duration, and strength of 

contractions, healthcare providers can evaluate the progress of labor 
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and identify any potential complications. This information helps in 

determining the need for interventions such as labor augmentation or 

the administration of pain relief. Timely interventions based on CTG 

readings can prevent adverse outcomes such as fetal distress, birth 

asphyxia, or maternal complications, ultimately reducing the risk of 

child and maternal mortality. 

The simplicity and cost-accessibility of CTGs have made them an 

indispensable tool in the field of obstetrics. Compared to more invasive 

procedures or sophisticated imaging techniques, CTGs offer a non-

invasive and user-friendly approach to monitoring fetal health. They 

can be easily employed in various healthcare settings, including clinics, 

hospitals, and even remote or low-resource areas where advanced 

medical facilities may be limited.  

The utilization of CTG data for automated assessment of fetal health 

represents a major advancement in prenatal care. Traditionally, the 

interpretation of CTG exams has relied heavily on the expertise of 

obstetricians, which can be subjective and prone to human error. 

However, this study indicates that objective and reliable assessment of 

fetal health can be achieved through automated algorithms. By 

analyzing patterns in the CTG data and comparing them to the 

outcomes determined by expert obstetricians, the studies were able to 

develop algorithms that accurately classified fetal health status. 

Machine learning (ML) has emerged as a transformative technology in 

the realm of healthcare, offering immense potential to revolutionize 

various aspects of the field. ML algorithms, powered by advanced 

computational models, have the ability to analyze vast amounts of 

medical data, uncover patterns, and generate valuable insights that can 

enhance diagnosis, treatment, and patient care. The integration of ML 

in healthcare facilitates the development of predictive models that aid 

in early detection and risk assessment of diseases. By leveraging 

techniques such as deep learning, neural networks, and natural 

language processing [9], ML algorithms can effectively process 

complex medical images, electronic health records (EHRs), and clinical 

notes, enabling clinicians to make more accurate and informed decisions 

[10], [11]. 

Moreover, ML has demonstrated remarkable proficiency in medical 

imaging analysis, a critical component of disease diagnosis and 

treatment planning [12]–[14]. Through the utilization of 

convolutional neural networks (CNNs) and image recognition 

algorithms, ML systems can detect abnormalities in medical images 

with a high level of accuracy, often outperforming human experts [15]. 

This technology holds significant potential for improving radiology 
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and pathology practices, allowing for faster and more precise diagnoses 

of conditions such as cancer, cardiovascular diseases, and neurological 

disorders [16]–[18]. ML-based predictive models can facilitate the 

identification of patients at higher risk of adverse events, enabling 

proactive interventions and personalized treatment plans. 

Methods  
The dataset contains information related to cardiotocograms (CTGs) 

and various fetal health indicators. It consists of 2,130 instances with 

21 attributes, providing a comprehensive set of features for analyzing 

and predicting fetal health [19]. 

Each instance in the dataset represents a fetal cardiotocogram 

examination, which is a non-invasive method used to monitor fetal well-

being during pregnancy [19]. The attributes include important 

measurements such as baseline fetal heart rate, accelerations, 

decelerations, and various indices derived from the CTG signals. 

Additionally, the dataset includes the corresponding fetal health 

classification, with three classes indicating the presence of normal, 

suspicious, or pathological fetal conditions. 

Univariate feature selection is a technique used to identify and select 

the most relevant features from a dataset based on their individual 

statistical significance. This approach operates by subjecting each 

feature to independent statistical tests and then ranking them according 

to their scores. It is commonly employed as a preliminary step before 

applying an estimator or predictive model to the data. One of the 

specific routines available in scikit-learn is SelectKBest. As the name 

suggests, this method aims to retain only the K highest-scoring features 

from the dataset, discarding the rest. In other words, it eliminates all 

but the K most relevant features according to their respective scores 

obtained from the univariate statistical tests. By specifying the desired 

value of K, the user can control the number of features to be selected. 

Following SelectKBest, the following features were dropped: 

uterine_contractions, light_decelerations, prolongued_decelerations, 

accelerations, fetal_movement, histogram_number_of_zeroes, 

histogram_max, histogram_number_of_peaks, and 

mean_value_of_short_term_variability. 

Table 1. Variables  

Variables Description 

baseline_value Baseline Fetal Heart Rate (FHR) 
(beats per minute) 

accelerations Number of accelerations per 
second 
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fetal_movement Number of fetal movements per 
second 

uterine_contractions Number of uterine contractions 
per second 

light_decelerations Number of light decelerations 
(LDs) per second 

severe_decelerations Number of severe decelerations 
(SDs) per second 

prolongued_decelerations Number of prolonged 
decelerations (PDs) per second 

abnormal_short_term_variability Percentage of time with abnormal 
short-term variability 

mean_value_of_short_term_variability Mean value of short-term 
variability 

percentage_of_time_with_abnormal_long_ter
m_variability 

Percentage of time with abnormal 
long-term variability 

mean_value_of_long_term_variability Mean value of long-term 
variability 

histogram_width Width of histogram made using 
all values from a record 

histogram_min Histogram minimum value 

histogram_max Histogram maximum value 

histogram_number_of_peaks Number of peaks in the exam 
histogram 

histogram_number_of_zeroes Number of zeros in the exam 
histogram 

histogram_mode Histogram mode 

histogram_mean Histogram mean 

histogram_median Histogram median 

histogram_variance Histogram variance 

histogram_tendency Histogram tendency 

fetal_health Encoded as 1-Normal; 2-Suspect; 
3-Pathological. (Target column) 

 

In the given dataset, the target class of fetal health exhibits a significant 

imbalance. The distribution of fetal health outcomes is highly skewed, 

with the majority of instances belonging to the class labeled as 1.00, 

indicating Normal fetal health. This class accounts for the highest 

frequency of observations within the dataset. 

The second most frequent class observed in the dataset is labeled as 

2.00, representing Suspect fetal health. While not as prevalent as the 

Normal class, the Suspect class still demonstrates a considerable 

presence within the dataset. 

On the other hand, the class with the least frequency in this dataset is 

labeled as 3.00, which corresponds to Pathological fetal health. 

Instances belonging to this class are significantly fewer compared to 

the other two classes. 
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To address the issue of class imbalance, the RandomOverSampler 

technique was employed. RandomOverSampler is a resampling method 

commonly used in machine learning to address class imbalance [20], 

[21]. It works by randomly replicating instances from the minority 

classes, in this case, the Suspect and Pathological classes, until a 

balanced distribution is achieved. By oversampling the minority classes, 

RandomOverSampler helps to alleviate the bias towards the majority 

class and create a more balanced representation of fetal health outcomes 

in the dataset. 

Among the various features in the dataset, the one that exhibits the 

strongest correlation with fetal health is prolonged decelerations. This 

feature demonstrates a correlation coefficient of 0.485, indicating a 

moderately positive relationship with fetal health. A higher value of 

prolonged decelerations tends to be associated with a higher likelihood 

of abnormal fetal health. 

Additionally, moderate correlations are observed between fetal health 

and two other features. The first is abnormal short-term variability, 

which shows a moderate correlation with fetal health. An increase in 

abnormal short-term variability is moderately associated with a higher 

probability of fetal health issues. 

The second feature demonstrating a moderate correlation with fetal 

health is the percentage of time with abnormal long-term variability. 

This feature indicates the proportion of time during which the fetal 

heart rate exhibits abnormal long-term variability. A higher percentage 

of time with abnormal long-term variability shows a moderate positive 

correlation with the presence of fetal health problems. 
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Figure 1. correlation and linear relationships between variables 
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Figure 2. Univariate feature selection 

 
 

Results 
The results of the machine learning models' performance metrics are 

presented in the table. Each model's accuracy, recall, precision, F1-

score, Matthews Correlation Coefficient (MCC) score, training time, 

prediction time, and total time are shown. 

Starting with logistic regression, the model achieved an accuracy of 

80.52%. This means that 80.52% of the predictions made by the model 

were correct. The recall and precision scores were also relatively high 

at 80.52% and 87.38%, respectively. Recall measures the proportion of 

true positive instances correctly predicted, while precision measures the 

proportion of instances predicted as positive that are actually true 

positive instances. The F1-score, which is the harmonic mean of recall 

and precision, was 82.47%. The MCC score, which assesses the quality 

of binary classifications, was 60.30%. The model's training time was 

relatively low at 0.103 seconds, and the prediction time was even lower 

at 0.010 seconds, resulting in a total time of 0.114 seconds. 

Moving on to k-nearest neighbors (kNN), this model achieved a higher 

accuracy of 88.97%. The recall and precision scores were also high at 

88.97% and 91.64%, respectively. This indicates that the kNN model 
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performed well in correctly identifying true positive instances and 

minimizing false positives. The F1-score was 89.72%, indicating a good 

balance between precision and recall. The MCC score was 74.61%, 

suggesting a relatively strong correlation between the predicted and 

true classes. The training time was very low at 0.009 seconds, and the 

prediction time was even lower at 0.004 seconds, resulting in a total 

time of 0.013 seconds. 

Figure 3. Model performances  

 
The support vector machine (SVM) model achieved an accuracy of 

85.45%. The recall and precision scores were also high at 85.45% and 

89.67%, respectively. This indicates that the SVM model performed 

well in correctly identifying true positive instances and had a relatively 

low rate of false positives. The F1-score was 86.66%, indicating a good 

balance between precision and recall. The MCC score was 68.31%, 

suggesting a moderate correlation between the predicted and true 

classes. However, the training time was relatively high at 10.130 

seconds, while the prediction time was very low at 0.004 seconds, 

resulting in a total time of 10.134 seconds. 

The Extra Trees model achieved the highest accuracy among the 

models at 93.66%. It also had high recall and precision scores at 93.66% 

and 93.82%, respectively. This indicates that the Extra Trees model 

performed exceptionally well in correctly identifying true positive 

instances and had a very low rate of false positives. The F1-score was 

93.71%, indicating a strong balance between precision and recall. The 

MCC score was 82.78%, suggesting a high correlation between the 

predicted and true classes. 
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Figure 4. Feature importance decision tree  

 
 

 

Figure 5. Feature importance and prediction in Extra Tree 

 

 
 

 

The training time for the Extra Trees model was 1.799 seconds, and 

the prediction time was 0.202 seconds, resulting in a total time of 2.001 
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seconds. This model demonstrates superior performance compared to 

the other models in terms of accuracy and precision. 

In our study, we analyzed the results of machine learning algorithms to 

determine the most influential features in predicting fetal health 

outcomes. Among all the features considered, we found that the 

following features exhibited significant importance in determining fetal 

health. 

The feature "accelerations" emerged as a crucial predictor. It refers to 

the number of accelerations per second, indicating how frequently the 

fetal heart rate accelerates within a given timeframe. A higher value of 

accelerations suggests a healthier fetal state. 

The feature "abnormal_short_term_variability" also demonstrated 

substantial importance. It represents the percentage of time during 

which abnormal short-term variability in the fetal heart rate is 

observed. A higher value of abnormal short-term variability indicates a 

higher likelihood of an adverse fetal health outcome. 

Additionally, the feature 

"percentage_of_time_with_abnormal_long_term_variability" played a 

significant role. It signifies the percentage of time with abnormal long-

term variability in the fetal heart rate. Higher values of abnormal long-

term variability indicate an increased risk of fetal health complications. 

The "histogram_width" feature, which measures the width of the 

histogram created using all values from a record, was found to have 

considerable feature importance. A wider histogram width suggests a 

broader range of values in the fetal heart rate, potentially indicating a 

healthier fetal state. 

Furthermore, both the "histogram_mean" and "histogram_variance" 

features displayed noteworthy importance. The histogram mean 

represents the average value of the histogram, while the histogram 

variance reflects the spread or variability of the values. These features 

provide valuable insights into the overall distribution and central 

tendencies of the fetal heart rate, enabling predictions about fetal health 

outcomes. 

Lastly, the "histogram_tendency" feature exhibited substantial 

significance. It describes the trend or direction of the histogram values 

over time. By capturing the changes and patterns in the fetal heart rate, 

this feature aids in predicting potential fetal health complications. 

Overall, our study identified these features as having large values of 

feature importance in predicting fetal health outcomes. By leveraging 



JAAHM  
Journal of Advanced Analytics in 
 Healthcare Management 
 

 

54 | P a g e  J. Adv. Analytics Healthc. Manage. 

 

 

machine learning algorithms, we gained valuable insights into the 

significance of these features, providing a basis for developing effective 

models for fetal health assessment and monitoring. 

Conclusion  
Fetal mortality is a significant public health problem that demands 

attention and action. Its effects are profound, affecting families 

emotionally, compromising maternal health, and impacting 

communities at large [22], [23]. By providing real-time and 

continuous data on fetal heart rate, movement, and uterine contractions, 

CTGs empower healthcare professionals to take proactive measures to 

prevent child and maternal mortality, ensuring safer pregnancies and 

deliveries for women worldwide. 

This study demonstrates the potential of machine learning techniques 

in predicting fetal health using Cardiotocograms (CTGs). The 

developed models show promising performance in accurately 

classifying fetal health conditions. The findings highlight the 

importance of feature selection in identifying key factors for predicting 

fetal well-being, such as the rate of accelerations, abnormal variability, 

and characteristics of the fetal heart rate histogram. These insights 

contribute to a deeper understanding of the complex relationship 

between CTG features and fetal health outcomes. 

While this study presents promising results in the prediction of fetal 

health using machine learning and Cardiotocograms (CTGs), there are 

several limitations that need to be acknowledged. Firstly, the dataset 

used in this study may not fully capture the diversity and complexity of 

fetal health conditions. The dataset consists of 2126 records, which 

might not be representative of the entire population. It is crucial to 

validate the performance of the developed models on larger and more 

diverse datasets to ensure their generalizability and robustness across 

different patient populations. 

Secondly, the feature selection process used in this study, specifically 

the univariate feature selection technique (SelectKBest), may not have 

captured all the relevant features associated with fetal health. While this 

technique helps identify the most relevant features, it relies on 

univariate statistical analysis and does not consider potential 

interactions or nonlinear relationships among features. Incorporating 

more advanced feature selection methods, such as recursive feature 

elimination or dimensionality reduction techniques like principal 

component analysis, could potentially enhance the performance and 

interpretability of the predictive models. 
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Additionally, although the study addresses the issue of class imbalance 

using the SMOTE RandomOverSampler technique, it is important to 

acknowledge that oversampling techniques may introduce certain 

biases or lead to overfitting. The effectiveness of SMOTE in mitigating 

class imbalance relies on the assumption that synthetic samples 

generated through interpolation accurately represent the minority 

class. Therefore, it is crucial to carefully evaluate the impact of 

oversampling on model performance and explore alternative 

approaches, such as undersampling or hybrid sampling techniques, to 

further address class imbalance. 

While the developed machine learning models demonstrate promising 

accuracy, recall, precision, and other performance metrics, the study 

primarily focuses on the predictive aspect. The clinical interpretability 

of the models and their integration into real-world healthcare settings 

require careful consideration. It is essential to conduct further research 

to assess the clinical utility of the developed models, including their 

integration into existing clinical workflows, validation through 

prospective studies, and evaluation of their impact on clinical decision-

making and patient outcomes. 
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