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Abstract
Breast cancer is the most prevalent form of cancer affecting women,

characterized by abnormal cell division in breast tissue. Not all tumors
pose a significant threat to life, as they can be either benign or malignant.
Determining the nature of a tumor—whether benign or malignant—is nec-
essary for guiding appropriate treatment strategies and ensuring patient
well-being. In this scenario, medical imaging is becoming a key applica-
tion of artificial intelligence in healthcare to improve diagnostic accuracy.
This study presents the development and evaluation of a deep learning-
based tool designed to distinguish between benign and malignant breast
tumors using histopathological images. The research used the Breast Can-
cer Histopathological Image Classification (BreakHis) dataset, which con-
tains 7,909 images from 82 patients across four magnification levels (40X,
100X, 200X, and 400X). The goal is to enhance the accuracy and scalability
of breast cancer diagnosis through the application of computer vision and
deep learning models. Data preprocessing in this study involved resizing
images to a uniform size and applying data augmentation techniques, in-
cluding random brightness adjustments, flips, and rotations. These methods
were employed to improve the models’ ability to handle variations in image
orientation and lighting. The study evaluated several deep learning models,
including a Convolutional Neural Network (CNN) and 4 transfer learning
models including MobileNetV3, EfficientNetB1, VGG16, and ResNet50V2.
The findings showed that EfficientNetB1 achieved the highest performance,
with a ROC-AUC score of 0.8767, demonstrating strong potential for dis-
tinguishing between benign and malignant cases. However, the model also
produced a relatively high number of false positives, which is a concern
for clinical application. The CNN, although simpler, achieved the highest
accuracy, suggesting its potential for use in resource-limited settings. The
findings indicate that deep learning models can be applied in breast cancer
diagnosis. Further refinement is, however, needed to reduce false positives
and ensure the models’ reliability in clinical practice.
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1 Introduction

Breast cancer begins in the epithelial tissue of the mammary gland and is a serious
health concern because it can proliferate uncontrollably and metastasize. This
type of cancer typically starts in the cells lining the milk ducts (ductal carcinoma)
or the lobules (lobular carcinoma) of the breast. The initial transformation of
normal cells into cancerous ones results in a malignant tumor, which, in its early
stages, may remain localized (in situ). Ductal carcinoma in situ (DCIS) is the most
common form of non-invasive breast cancer, confined to the ductal system and
not yet capable of spreading to other tissues. Lobular carcinoma in situ (LCIS),
although rarer, similarly remains within the lobules and, while not directly life-
threatening, increases the future risk of invasive breast cancer (Elmore et al.,
2005) (Carey et al., 2006). In 2022, the global incidence of breast cancer among
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Figure 1: Breast Cancer Rates (ASR/100,000) by Country in 2022.
Source: World Cancer Research Fund International (World Cancer Research
Fund International, 2024)

women reached a staggering 2,296,840 cases, with an age-standardized rate (ASR)
of 46.8 per 100,000 women. France recorded the highest incidence rate, with an
ASR of 105.4 per 100,000 women, indicating a significant public health challenge
(World Cancer Research Fund International, 2024). Close behind was Cyprus,
highlighting regional disparities in breast cancer rates. The United States also
reported a notably high incidence rate at 95.9, despite having a smaller population
compared to countries like China and India. China, while having the highest
number of cases at 357,161, exhibited a lower incidence rate of 33.0 per 100,000,
likely due to its vast population. These variations in breast cancer incidence rates
across countries underscore the influence of factors such as healthcare access,
screening practices, lifestyle, and genetic predispositions.

The global burden of breast cancer mortality in 2022 was also significant, with
666,103 deaths reported worldwide. Fiji and Jamaica had the highest mortality
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Risk Factor Description Notes
Getting older The risk for breast cancer increases

with age.
Most breast cancers are
diagnosed after age 50.

Genetic mutations Women who have inherited changes
(mutations) to certain genes, such as
BRCA1 and BRCA2, are at higher risk
of breast and ovarian cancer.

Inherited gene changes
significantly increase risk.

Reproductive his-
tory

Starting menstrual periods before age
12 and starting menopause after age 55
expose women to hormones longer, rais-
ing their risk of getting breast cancer.

Longer exposure to hor-
mones increases risk.

Having dense
breasts

Dense breasts have more connective tis-
sue than fatty tissue, which can some-
times make it hard to see tumors on a
mammogram.

Women with dense breasts
are more likely to get
breast cancer.

Personal history of
breast cancer or
certain noncancer-
ous breast diseases

Women who have had breast cancer are
more likely to get breast cancer a sec-
ond time.

Some noncancerous breast
diseases are associated
with higher risk.

Family history of
breast or ovarian
cancer

A woman’s risk for breast cancer is
higher if she has a first-degree relative
or multiple family members with breast
or ovarian cancer.

Having a first-degree male
relative with breast cancer
also raises risk.

Previous treatment
using radiation
therapy

Women who had radiation therapy to
the chest or breasts before age 30 have
a higher risk of getting breast cancer
later in life.

Early exposure to radi-
ation therapy increases
risk.

Exposure to the
drug diethylstilbe-
strol (DES)

DES was given to some pregnant
women in the United States between
1940 and 1971 to prevent miscarriage.

Women who took DES or
whose mothers took DES
have a higher risk of get-
ting breast cancer.

Table 1: Overview of key risk factors for breast cancer, including age, genetic mu-
tations, reproductive history, breast density, personal and family medical history,
previous radiation therapy, and exposure to diethylstilbestrol (DES).

rates, emphasizing the critical need for improved healthcare interventions in these
regions. Among the larger nations, India recorded the highest number of deaths
at 98,337, with an ASR of 13.7 per 100,000, reflecting both the high incidence
and the challenges in effective treatment. Indonesia and Nigeria, despite having
lower incidence rates, showed relatively high mortality rates at 14.4 and 26.8 per
100,000, respectively, pointing to potential issues in early detection and treatment
access. The disparity between the incidence and mortality rates in countries like
China and the United States suggests differences in healthcare infrastructure and
the effectiveness of treatment protocols, with the U.S. having a more advanced
healthcare system that likely contributes to better survival rates despite high
incidence.

When these malignancies progress, they can become invasive, breaking through
the basement membrane and infiltrating surrounding breast tissues. Invasive
breast cancers are classified primarily into invasive ductal carcinoma (IDC), which
constitutes 70-80% of cases, and invasive lobular carcinoma (ILC), which accounts
for 10-15%. IDC begins in the milk ducts and spreads to the surrounding tissue,
often forming a palpable mass. ILC, originating in the lobules, typically spreads
in a linear fashion, which may not form a distinct lump, making it less detectable
through standard imaging techniques. The prognosis for these invasive cancers
is heavily dependent on the stage at diagnosis, molecular characteristics, and the
presence or absence of metastasis.

Breast cancer’s ability to metastasize is what makes it dangerous. Metastasis
involves cancer cells breaking away from the original tumor site and traveling
through the bloodstream or lymphatic system to other parts of the body. The
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Type of Breast Cancer Description
Non-invasive breast can-
cers

Non-invasive breast cancers, also known as stage 0 or
carcinomas in situ, are abnormal cells that remain in
the area of the breast where they first formed. They
are not generally life-threatening but can become in-
vasive if left untreated. Examples include Ductal
Carcinoma in Situ (DCIS) and Lobular Carcinoma
in Situ (LCIS).

Invasive breast cancers Invasive breast cancers do not stay in their origi-
nal sites; they invade nearby breast tissue, lymph
nodes, and distant organs. Examples include Inva-
sive Ductal Carcinoma (IDC) and Invasive Lobular
Carcinoma (ILC).

Table 2: Comparison of non-invasive and invasive breast cancers, highlighting key
differences in their progression and impact.

first site of spread is often the axillary lymph nodes, located under the arm.
The involvement of these lymph nodes is a critical factor in staging breast can-
cer and determining the prognosis. When breast cancer spreads to distant or-
gans—commonly the lungs, liver, bones, or brain—it is classified as metastatic or
stage IV. At this stage, the disease is generally considered incurable, and treat-
ment focuses on extending life and improving the quality of life rather than cure.

The risk of developing breast cancer is influenced by several factors, some of
which are non-modifiable (Sun et al., 2017). Age is one of the most significant risk
factors, with the incidence of breast cancer increasing with advancing age (Horto-
bagyi, 1998). The majority of breast cancer cases are diagnosed in women over the
age of 50. Genetic factors also play a crucial role; mutations in the BRCA1 and
BRCA2 genes significantly increase the risk of both breast and ovarian cancers.
Women with these mutations may have up to an 85% lifetime risk of developing
breast cancer (Houghton and Hankinson, 2021). Other genes, such as TP53 and
PTEN, are also associated with hereditary breast cancer syndromes, albeit to a
lesser extent.

Type Description
Ductal Carcinoma in Situ
(DCIS)

The most common type of non-invasive breast can-
cer, DCIS starts in the cells lining the milk ducts of
the breast. It is generally considered an early form
of breast cancer.

Lobular Carcinoma in
Situ (LCIS)

A rarer non-invasive breast cancer that starts in the
cells lining the breast lobules. LCIS is not generally
thought to progress to invasive cancer but increases
the risk of breast cancer in the future.

Table 3: Overview of common types of non-invasive breast cancers, including
DCIS and LCIS.

Family history is another important risk factor. Women with a first-degree
relative (mother, sister, or daughter) who has been diagnosed with breast cancer
have a higher risk of developing the disease themselves. The risk increases further
if multiple relatives are affected or if the cancer occurred at a young age. More-
over, women with a personal history of breast cancer are at an increased risk of
developing a second primary breast cancer, either in the same breast or the op-
posite one. Certain benign breast conditions, such as atypical ductal hyperplasia
or LCIS, are also associated with an elevated risk of developing invasive breast
cancer (Key et al., 2001) (MacMahon et al., 1973).

Hormonal factors contribute to breast cancer risk as well. Women who ex-
perience early menarche (before age 12) or late menopause (after age 55) have a
longer lifetime exposure to estrogen, which is associated with an increased risk of
breast cancer. Similarly, nulliparity (having no children) or having the first child
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Figure 2: Number of women (in thousands) and ASR/100,000 for the top 10
countries.
Source: World Cancer Research Fund International (World Cancer Research
Fund International, 2024)

after age 30 are risk factors, likely due to prolonged exposure to estrogen without
the interruption of pregnancy. The use of hormone replacement therapy (HRT)
during menopause combined estrogen-progestin therapy, has also been linked to
an increased risk of breast cancer, though this risk declines after discontinuation
of HRT (Momenimovahed and Salehiniya, 2019).

Environmental and lifestyle factors, while less significant than genetic and
hormonal factors, still play a role in breast cancer risk. Exposure to ionizing
radiation during adolescence and early adulthood, increases the risk of developing
breast cancer later in life. This is relevant for women who received radiation
therapy to the chest for conditions such as Hodgkin’s lymphoma. Lifestyle factors
such as alcohol consumption, obesity, and lack of physical activity have also been
associated with an increased risk of breast cancer. Alcohol, even in moderate
amounts, has been shown to increase breast cancer risk, possibly due to its effects
on estrogen metabolism. Obesity after menopause, increases the risk due to the
higher levels of estrogen produced by adipose tissue. Conversely, regular physical
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activity is associated with a reduced risk of breast cancer, likely due to its effects
on hormone levels, body weight, and immune function (Prat and Perou, 2011).

Breast cancer can be categorized into several subtypes based on the molec-
ular characteristics of the tumor the presence or absence of hormone receptors
(estrogen and progesterone receptors) and the HER2 protein. These subtypes
are critical in determining the most appropriate treatment strategy. Hormone
receptor-positive (HR-positive) breast cancers, which express estrogen or proges-
terone receptors, are the most common subtype. These cancers typically have a
better prognosis and respond well to hormone therapies, such as tamoxifen or aro-
matase inhibitors, which either block the hormone receptors or decrease estrogen
production in the body (Stephens et al., 2012).

Type of Invasive Can-
cer

Description

Invasive Ductal Carci-
noma (IDC)

The most common type of invasive breast cancer,
originating in the milk ducts. IDC typically forms
a hard mass in the breast and can spread to other
tissues.

Invasive Lobular Carci-
noma (ILC)

The second most common type, originating in the
breast lobules. ILC often presents differently from
IDC, with tumors growing in lines rather than lumps.

Hormone Receptor
(HR)–Positive

Breast cancer classified as HR-positive is fueled by
estrogen and/or progesterone and has a good prog-
nosis when treated with hormone therapies.

HER2-Positive Breast cancer that overexpresses the HER2 protein,
leading to aggressive tumor growth. HER2-positive
breast cancer is treated with targeted therapies like
trastuzumab.

Triple-Negative Breast
Cancer (TNBC)

TNBC lacks estrogen, progesterone, and HER2 re-
ceptors, making it more challenging to treat. TNBC
is often more aggressive and diagnosed at later
stages.

Table 4: Common types of invasive breast cancers, including their molecular
characteristics and implications for treatment.

HER2-positive breast cancers, characterized by an overexpression of the HER2
protein, tend to be more aggressive but respond to targeted therapies such as
trastuzumab (Herceptin). The development of trastuzumab in the late 1990s was
a significant breakthrough in breast cancer treatment, dramatically improving
the prognosis for patients with HER2-positive breast cancer. More recently, the
recognition of HER2-low breast cancers has expanded the potential for targeted
therapies in a broader range of patients.

Triple-negative breast cancer (TNBC), which lacks estrogen, progesterone,
and HER2 receptors, is a challenging subtype to treat due to the absence of
targeted therapies. TNBC is more common in younger women, African American
women, and those with BRCA1 mutations. It tends to be more aggressive and
has a higher likelihood of recurrence compared to other breast cancer subtypes.
Treatment for TNBC primarily involves surgery, chemotherapy, and radiation,
but recent research is exploring new avenues such as immunotherapy and PARP
inhibitors, which have shown promise in clinical trials (Waks and Winer, 2019).

The treatment of breast cancer is highly individualized, depending on the
stage of the disease, the molecular characteristics of the tumor, and the patient’s
overall health. Early-stage breast cancer is typically treated with surgery, which
may involve a lumpectomy (removal of the tumor with a margin of healthy tissue)
or mastectomy (removal of the entire breast). Radiation therapy is often used in
conjunction with surgery to reduce the risk of local recurrence. For patients
with HR-positive breast cancer, hormone therapy is a cornerstone of treatment
in postmenopausal women, where aromatase inhibitors are often used to reduce
estrogen levels.

Chemotherapy is a common treatment for more advanced breast cancers or
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those with a high risk of recurrence. It involves the use of cytotoxic drugs that
target rapidly dividing cells, including cancer cells. Chemotherapy can be admin-
istered before surgery (neoadjuvant chemotherapy) to shrink the tumor, making it
more amenable to surgical removal, or after surgery (adjuvant chemotherapy) to
eliminate any remaining cancer cells. While effective, chemotherapy is associated
with significant side effects, including fatigue, nausea, hair loss, and an increased
risk of infections due to its impact on the immune system.

Despite significant advances in treatment, metastatic breast cancer remains
a major challenge. Once breast cancer has spread to distant organs, it is gen-
erally considered incurable, with treatment focusing on prolonging survival and
maintaining quality of life. The management of metastatic breast cancer involves
a combination of systemic therapies, including hormone therapy, chemotherapy,
targeted therapy, and immunotherapy, tailored to the specific characteristics of
the tumor. Palliative care, aimed at managing symptoms and improving the pa-
tient’s comfort, is also a crucial component of care for patients with metastatic
disease.

The prognosis for breast cancer patients has improved significantly over the
past few decades, largely due to advances in early detection, improved surgical
techniques, and the development of more effective therapies. However, breast
cancer remains a leading cause of cancer-related death among women worldwide,
underscoring the need for continued research and public health efforts. Regular
screening with mammography is the most effective method for early detection of
breast cancer, allowing for diagnosis at a stage when the disease is most treatable.
Public awareness campaigns and education about the importance of screening, risk
factors, and the signs and symptoms of breast cancer are vital in reducing the
burden of this disease (Waks and Winer, 2019).

Histopathological imaging involves the microscopic examination of tissue sam-
ples to identify abnormalities at the cellular level in the context of disease diagnosis
such as cancer. In breast cancer diagnosis, histopathological images are critical
as they provide detailed visual information about the tissue structure, cell mor-
phology, and the presence of cancerous cells. These images are typically obtained
from biopsy samples, which are stained to highlight different cellular components,
making it easier to identify key features that indicate malignancy. The interpreta-
tion of these images requires a high level of expertise, as subtle differences in cell
structure and tissue organization can distinguish between benign and malignant
tumors.

The data derived from histopathological imaging is rich in detail, capturing
the complexity of tissue architecture and cellular variations. This data can be
extensive in large-scale studies or clinical settings where multiple samples are an-
alyzed across different magnification levels. For example, the BreakHis dataset,
which is commonly used in research, contains thousands of histopathological im-
ages of breast tissue at various magnifications, offering a comprehensive view of
both benign and malignant cases. Such datasets are used for developing and
training machine learning models that aim to assist in the diagnosis process by
automating the identification and classification of cancerous cells.

Analyzing histopathological imaging data through computational methods,
such as deep learning, has the potential to significantly enhance diagnostic accu-
racy and efficiency. Machine learning models can be trained on these images to
learn patterns and features associated with malignancy, enabling them to classify
new samples with high precision. The use of such models can reduce the variability
and subjectivity associated with human interpretation, providing more consistent
and reliable diagnoses. As the availability of large, annotated histopathological
datasets continues to grow, the integration of artificial intelligence in histopathol-
ogy is likely to become a standard practice in clinical diagnostics.

2 Dataset

The Breast Cancer Histopathological Image Classification (BreakHis) dataset con-
stitutes a significant resource in the domain of digital pathology in the classifi-
cation and analysis of breast cancer histopathological images (Adeshina et al.,
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2018). Comprising a total of 9,109 microscopic images, the dataset was metic-
ulously compiled from 82 patients, capturing the intricate histological variations
inherent in breast tumor tissues. The images are organized across four distinct
magnification factors—40X, 100X, 200X, and 400X—each magnification provid-
ing a different level of detail, critical for nuanced analysis. This variation in
magnification is used for understanding the morphological features at different
scales for aiding in the development of more robust classification models. The im-
ages are stored in a standardized format—700x460 pixels, 3-channel RGB, 8-bit
depth per channel, and in PNG format—ensuring consistency in data quality and
facilitating reproducibility in research (Bayramoglu et al., 2016).

A key aspect of the BreakHis dataset is its categorization of breast tumor
tissues into two primary classes: benign and malignant. Within the benign cat-
egory, the dataset includes four histologically distinct subtypes: adenosis (A),
fibroadenoma (F), phyllodes tumor (PT), and tubular adenoma (TA). Each of
these subtypes presents unique histopathological characteristics, making the be-
nign class diverse in its representation. For instance, adenosis is characterized by
the proliferation of glandular tissue, often mimicking carcinoma for presenting a
challenge in differential diagnosis. Fibroadenoma, the most common benign breast
tumor, exhibits a mixture of stromal and epithelial elements, which can vary in
cellularity and morphology. Phyllodes tumors, although classified as benign, have
the potential for malignant transformation, exhibiting a leaf-like stromal growth
pattern. Tubular adenomas are rare and are distinguished by their well-defined
tubular structures (Spanhol et al., 2015).

The malignant category, representing the more clinically significant aspect of
the dataset, encompasses four distinct subtypes: ductal carcinoma (DC), lobu-
lar carcinoma (LC), mucinous carcinoma (MC), and papillary carcinoma (PC).
Ductal carcinoma, specially the invasive type (IDC), is the most prevalent form
of breast cancer, characterized by its ability to breach the basement membrane
and invade surrounding tissues. Lobular carcinoma, often more subtle in its his-
tological presentation, exhibits a discohesive growth pattern due to the loss of
E-cadherin, a key cell adhesion molecule. Mucinous carcinoma, also known as
colloid carcinoma, is less common and is identified by the presence of extracellular
mucin pools, which can significantly alter the tumor microenvironment. Papil-
lary carcinoma, although rare, is distinguished by its papillary structures lined by
epithelial cells, often surrounded by a fibrovascular core.

The dataset’s structure allows for comprehensive analysis across different mag-
nification levels, providing insights into how histopathological features vary with
scale. For instance, at lower magnifications (40X), the overall architecture and
organization of the tissue can be observed, which is crucial for identifying pat-
terns such as ductal or lobular arrangements. At higher magnifications (400X),
cellular details such as nuclear morphology, mitotic figures, and cellular atypia
become more prominent, aiding in the differentiation between benign and malig-
nant tissues. This multi-scale approach is essential for the development of ma-
chine learning models that can accurately classify breast tumors based on their
histopathological features.

In addition to the classification of tumors, the dataset also includes metadata
embedded within the filenames of the images. This metadata provides crucial
information about the biopsy method, tumor class, tumor type, patient identi-
fication, and magnification factor. For example, the filename ”SOB B TA-14-
4659-40-001.png” reveals that the image represents a benign tubular adenoma,
collected using the SOB method from patient sample 14-4659 at 40X magnifica-
tion. Such detailed metadata not only facilitates the organization and retrieval of
images but also allows for more nuanced analyses, such as patient-specific studies
or comparisons across different biopsy methods (Zhu et al., 2019) (Yamlome et al.,
2020).

Each subtype within the benign and malignant categories presents unique
challenges for classification, both for pathologists and for automated systems.
For instance, the overlap in features between certain benign and malignant sub-
types, such as between adenosis and low-grade ductal carcinoma, necessitates the
development of sophisticated algorithms capable of capturing subtle differences in
histological features. Moreover, the inclusion of rare subtypes, such as mucinous
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carcinoma and phyllodes tumor, provides an opportunity to explore the bound-
aries of current classification systems and to potentially identify new biomarkers
or features that can improve diagnostic accuracy.

The dataset’s composition, with 2,480 benign and 5,429 malignant samples,
reflects the clinical reality where malignant cases are more prevalent, thereby
aligning the dataset’s distribution with real-world scenarios. This distribution
is crucial for training machine learning models, as it ensures that the models
are exposed to a representative sample of both benign and malignant cases for
improving their generalizability and performance in clinical settings. Additionally,
the large sample size of the dataset supports robust statistical analyses, enabling
researchers to validate their models across a diverse set of images and conditions
(Wei et al., 2017).

3 Data preprocessing

The dataset includes images taken at four different magnifications: 40X, 100X,
200X, and 400X. It has been observed that training models on images with a
magnification of at least 200X often leads to better results, as these higher mag-
nifications provide more detail, which is useful for distinguishing between benign
and malignant tissues.

The dataset presents a challenge due to its class imbalance, with a greater
number of malignant images compared to benign ones. This imbalance can make
accuracy a misleading performance metric, as a model that simply predicts the
majority class (malignant) would achieve an accuracy of 65.94% without correctly
identifying any benign cases. However, such a model would have an ROC-AUC
score of only 50%, indicating it performs no better than random guessing. This
illustrates the importance of using more reliable metrics like ROC-AUC, which
measure the model’s ability to differentiate between classes.

Magnification
40X, 100X, 200X, 400X
200X+ preferred for detail

Class Imbalance
More malignant images

Use ROC-AUC over accuracy

Image Standardization
Resize to 760x460 pixels

Using TensorFlow

Data Augmentation
Brightness shifts, flips, rotations

Figure 3: Preprocessing Stages

The preprocessing of the images involves converting them into a format that
machine learning models can work with. Using the TensorFlow image module, the
PNG images are loaded, decoded into 3D tensors representing pixel values in RGB
channels, and resized to a uniform size (typically 760x460 pixels). Standardizing
the image size ensures that all images are consistent, which is important for model
training.

Data augmentation techniques are applied to increase the diversity of the
training data and improve model robustness. These techniques include random
brightness shifts to simulate different lighting conditions, as well as random hor-
izontal and vertical flips and rotations to help the model recognize features re-
gardless of orientation. These steps help in making the model more generalizable
and less prone to overfitting.
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Figure 4: Sample images at different magnification factors

The preprocessing of the BreakHis dataset involves selecting appropriate mag-
nification levels, addressing class imbalance, standardizing image sizes, and ap-
plying data augmentation. These processes are essential for preparing the data
for effective use in machine learning models that can distinguish between benign
and malignant breast cancer tissues.

4 Deep Learning Methods

MobileNetV3, EfficientNetB1, VGG16, and ResNet50V2 represent some of the
most influential convolutional neural network (CNN) architectures in the field of
deep learning for image classification tasks. Each of these models brings specific
advantages and trade-offs in terms of accuracy, computational efficiency, and suit-
ability for deployment in different environments, including resource-constrained
settings. Understanding their architectural differences, mathematical formula-
tions, and practical implications is essential for their effective application in var-
ious computer vision tasks, such as medical image analysis (Aceves-Fernandez,
2020).

4.1 MobileNetV3

MobileNetV3 is designed with a focus on efficiency, making it suitable for de-
ployment on mobile devices and other environments with limited computational
resources. It builds on the foundation of previous MobileNet versions, incorpo-
rating several advanced techniques to balance accuracy and latency. The core of
MobileNetV3 is based on depthwise separable convolutions, a factorization of a
standard convolution into a depthwise convolution and a pointwise convolution.
This reduces the computational cost from O(k2 ·Di ·Do) to O(k2 ·Di +Di ·Do),
where k is the kernel size, Di is the number of input channels, and Do is the
number of output channels.

Mathematically, a depthwise separable convolution can be expressed as:

yi,j,o =

k−1∑
m=0

k−1∑
n=0

xi+m,j+n,c · wm,n,c,o + bo

where yi,j,o is the output, xi+m,j+n,c is the input, wm,n,c,o represents the filter
weights, and bo is the bias term.
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Depthwise Separable Convolutions:
yi,j,o =

∑k−1
m=0

∑k−1
n=0 xi+m,j+n,c · wm,n,c,o + bo

Squeeze-and-Excitation Module:
SE(x) = x · σ(FC2(ReLU(FC1(GAP (x)))))

h-swish Activation:
h-swish(x) = x · ReLU6(x+3)

6

Figure 5: MobileNetV3 Key Components

MobileNetV3 also introduces novel elements such as the use of squeeze-and-
excitation (SE) modules, which dynamically recalibrate feature maps, and the h-
swish activation function, a computationally efficient approximation of the swish
activation function. The SE module can be expressed as:

SE(x) = x · σ(FC2(ReLU(FC1(GAP (x)))))

where GAP stands for global average pooling, and σ is the sigmoid function. The
h-swish activation is given by:

h-swish(x) = x · ReLU6(x+ 3)

6

These improvements enable MobileNetV3 to achieve higher accuracy than its
predecessors while maintaining low latency, making it ideal for edge applications
such as mobile devices.

4.2 EfficientNetB1

EfficientNetB1 is part of the EfficientNet family, which is designed to achieve
state-of-the-art accuracy with a relatively low number of parameters and FLOPs
(floating point operations per second). The key innovation behind EfficientNet is
the compound scaling method, which uniformly scales the network’s depth, width,
and resolution using a set of predetermined scaling coefficients. The scaling can
be mathematically formulated as:

depth = αd, width = βd, resolution = γd

where d is the scaling factor, and α, β, and γ are constants determined through
a grid search. This method enables EfficientNetB1 to strike a balance between
computational efficiency and accuracy.

Compound Scaling:
depth = αd, width = βd, resolution = γd

Neural Architecture Search:
Optimized convolutional blocks and arrangement.

Efficient Blocks:
Depthwise separable convolutions and SE blocks.

Figure 6: EfficientNetB1 Key Components

EfficientNetB1 employs a backbone architecture similar to that of MobileNetV3,
including depthwise separable convolutions and SE blocks, but it uses a different
network scaling strategy. The baseline EfficientNet architecture (EfficientNet-B0)
was optimized using a neural architecture search (NAS), which automatically dis-
covered the optimal convolutional blocks and their arrangement. EfficientNetB1
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is a scaled-up version of this baseline, offering higher accuracy at the cost of
increased computational requirements. The architecture’s design makes it well-
suited for tasks that require a good trade-off between accuracy and efficiency,
such as medical image analysis where both factors are critical.

4.3 VGG16

VGG16 is one of the earlier deep CNN architectures that achieved significant
success in image classification tasks in the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) 2014. The architecture of VGG16 is characterized by
its simplicity and uniformity, consisting of 16 layers, including 13 convolutional
layers and 3 fully connected layers. Unlike more recent architectures, VGG16 ex-
clusively uses 3x3 convolutional kernels throughout the network, with the depth
of the network providing its representational power.

Convolutional Layers:
yi,j,o =

∑3−1
m=0

∑3−1
n=0 xi+m,j+n,c · wm,n,c,o + bo

Fully Connected Layers:
3 FC layers at the end of the network.

Simple Design:
Uniform use of 3x3 kernels throughout.

Figure 7: VGG16 Key Components

The convolutional operation in VGG16 can be expressed as:

yi,j,o =

3−1∑
m=0

3−1∑
n=0

xi+m,j+n,c · wm,n,c,o + bo

where the 3x3 filter size is applied across the depth of the input volume. Despite its
relatively simple design, VGG16 has a large number of parameters, approximately
138 million, which makes it computationally expensive and memory-intensive.
However, its straightforward design and high accuracy have made it a popular
choice for transfer learning, where the pre-trained weights of VGG16 are used as
a starting point for various downstream tasks.

One of the limitations of VGG16 is its large memory footprint and computa-
tional cost, which limits its deployment in environments with limited resources.
However, its high accuracy and the ease of fine-tuning make it a tool for applica-
tions where computational resources are not a primary concern.

4.4 ResNet50V2

ResNet50V2 is a variant of the ResNet (Residual Networks) architecture, which
introduced the concept of residual learning to address the degradation problem
in deep networks. The degradation problem refers to the phenomenon where
increasing the depth of a network leads to higher training error, contrary to the
expectation that a deeper network should perform at least as well as a shallower
one. ResNet solves this problem by introducing shortcut connections, or residual
connections, which bypass one or more layers.

The basic building block of ResNet can be expressed as:

y = F (x, {Wi}) + x

where x is the input, y is the output, and F (x, {Wi}) represents the residual
mapping to be learned. In ResNet50V2, each residual block consists of three
layers of 1x1, 3x3, and 1x1 convolutions, with batch normalization (BN) and
ReLU activation applied after each convolution. The shortcut connections enable
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Residual Learning:
y = F (x, {Wi}) + x

Residual Block:
y = x +

Conv1x1(ReLU(BN(Conv3x3(ReLU(BN(x))))))

BatchNorm and ReLU before Convolutions:
Improved performance over original ResNet.

Figure 8: ResNet50V2 Key Components

the training of very deep networks by mitigating the vanishing gradient problem,
as gradients can flow directly through the shortcut connections.

ResNet50V2 introduces a few modifications compared to the original ResNet
architecture (ResNet50). It reorders the batch normalization and ReLU layers
before the convolution layers in the residual blocks, which has been shown to
improve performance. The architecture can be described mathematically as:

y = x+Conv1x1(ReLU(BN(Conv3x3(ReLU(BN(x))))))

This architecture is highly effective for a wide range of image classification tasks
in scenarios where high accuracy is required without excessively increasing the
number of parameters. ResNet50V2, with its 50 layers, strikes a balance be-
tween depth and computational efficiency, making it suitable for both research
and practical applications.

**Comparison and Practical Considerations**
When choosing between MobileNetV3, EfficientNetB1, VGG16, and ResNet50V2,

several factors must be considered, including the computational resources avail-
able, the required accuracy, and the specific application domain.

MobileNetV3 is advantageous in resource-constrained environments due to its
lightweight design and low latency. It is well-suited for deployment on mobile
devices or embedded systems where computational power and energy efficiency
are critical. The use of depthwise separable convolutions and efficient activation
functions ensures that MobileNetV3 can perform well even with limited resources.

EfficientNetB1, on the other hand, offers a good balance between efficiency and
accuracy. The compound scaling method allows the architecture to be adapted
to different resource constraints by scaling the depth, width, and resolution uni-
formly. This flexibility makes EfficientNetB1 a strong candidate for applications
that require high accuracy but still need to consider computational cost, such as
in medical image analysis where diagnostic accuracy is paramount.

VGG16, despite its simplicity and large number of parameters, remains a
popular choice for transfer learning. Its high accuracy and straightforward archi-
tecture make it easy to fine-tune for specific tasks, although its large memory and
computational requirements limit its use in environments with limited resources.
VGG16 is often used as a benchmark model or in scenarios where pre-trained
models are needed for tasks with ample computational resources.

ResNet50V2, with its residual connections and deep architecture, is ideal for
tasks that require high accuracy and can afford the computational cost. The
introduction of residual connections allows ResNet50V2 to train deeper networks
without suffering from the degradation problem, making it suitable for complex
tasks where a deep model is necessary. ResNet50V2 is often used in research and
industry for tasks that require robust performance across a wide range of image
classification problems.

5 Results

The results obtained from the series of experiments conducted with various convo-
lutional neural network (CNN) architectures highlight the effectiveness and chal-
lenges associated with using different models for the classification of breast cancer
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histopathological images. These experiments involved both CNNs and pre-trained
models utilizing transfer learning techniques. The evaluation of these models was
based on key performance metrics such as accuracy, loss, and the area under the
receiver operating characteristic curve (ROC-AUC), with a special focus on the
ability of the models to minimize false positives and false negatives, which are
critical in medical diagnostics.

Figure 9: CNN prediction

Starting with the CNN model, it was designed with a relatively simple archi-
tecture consisting of multiple convolutional layers followed by max-pooling, global
average pooling, and fully connected layers. The network was augmented with
dropout layers to mitigate overfitting, a common issue when training on limited
datasets. The architecture was composed of 134,541 parameters, nearly all of
which were trainable. Despite its simplicity, the model achieved a respectable
accuracy of 85.47% and an ROC-AUC score of 83.18%, with a moderate loss of
0.5351. The model produced 86 false positives and 81 false negatives, indicating a
relatively balanced trade-off between the two types of errors. This performance is
notable given the lightweight nature of the model and the limited data on which
it was trained. However, the presence of false negatives remains a significant
concern, as these could lead to missed diagnoses in a clinical setting.

In contrast, when employing transfer learning techniques, more complex pre-
trained models were evaluated. The first of these was MobileNetV3, a model
optimized for mobile and edge devices due to its efficiency in computation and
power consumption. This model was configured with a total of 3,250,625 param-
eters, with 254,273 trainable. Despite its computational efficiency, MobileNetV3
underperformed compared to other models in terms of key metrics, achieving an
accuracy of 75.98% and an ROC-AUC score of 77.86%, with a loss of 0.4964. No-
tably, the model generated a substantial number of false positives (190), which is
problematic as it could result in unnecessary alarms for healthy individuals. The
model’s performance suggests that while it is lightweight and efficient, it may not
be as suitable for tasks requiring high precision, such as cancer detection, where
the cost of false positives is high.

EfficientNetB1, another model evaluated using transfer learning, demonstrated
the best overall performance among the tested models. This architecture, known
for its balance between efficiency and accuracy, was composed of 7,267,317 param-
eters, with 336,193 trainable. The model achieved the highest ROC-AUC score of
87.67% and an accuracy of 83.99%, with the lowest loss recorded at 0.3861. De-
spite these impressive metrics, the model still produced 120 false positives, which,
although fewer than those from MobileNetV3, remain a significant concern. The
success of EfficientNetB1 in this task is likely due to its advanced architecture,
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Figure 10: EfficientNetB1 prediction

which scales efficiently with both depth and width of the network, allowing it to
capture a broad range of features across different scales in the images.

The VGG16 model, known for its simplicity and depth, was also tested. With a
total of 14,936,385 parameters, of which 221,697 were trainable, VGG16 achieved
an accuracy of 82.94% and an ROC-AUC score of 87.34%, with a loss of 0.4317.
However, the model produced a notably high number of false negatives (107),
which is a critical shortfall in medical diagnostics as it could lead to undetected
cases of cancer. This issue suggests that while VGG16 can capture detailed fea-
tures due to its deep architecture, it may struggle with generalizing well enough
to minimize both false negatives and false positives effectively.

Lastly, the ResNet50V2 model, a deep residual network with 24,097,601 pa-
rameters (532,801 trainable), was evaluated. This model achieved an accuracy of
79.63% and an ROC-AUC score of 84.41%, with a loss of 0.4753. ResNet50V2,
however, produced the highest number of false negatives (140), which is a sig-
nificant drawback, indicating that the model might be overly conservative in its
predictions, potentially leading to missed diagnoses. The residual connections in
ResNet, which help in training very deep networks, are effective in preventing
vanishing gradients but may have contributed to the model’s cautious nature,
resulting in a higher rate of missed cancer cases.

When comparing the models based on key metrics, EfficientNetB1 stands out
as the most promising, with the highest ROC-AUC score and the lowest loss,
indicating its superior ability to distinguish between benign and malignant cases.
However, despite its high performance, the presence of false positives still high-
lights the need for further refinement. The CNN model, while achieving the high-
est accuracy, still faces challenges in minimizing both false positives and negatives
effectively.

EfficientNetB1 shows the most potential due to its high ROC-AUC score and
low loss. The CNN model, despite being lightweight, achieved commendable
results, while pre-trained models like VGG16 and ResNet50V2 highlighted the
trade-offs between model complexity and performance. The results suggest that
for tasks involving critical medical diagnostics, such as cancer detection, it is
essential to balance accuracy, false positive rates, and false negative rates to ensure
reliable and trustworthy predictions. Further fine-tuning and possibly combining
multiple models could lead to improved performance and more robust outcomes
in clinical settings.
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6 Conclusion

The research presented in this study highlights the critical role that deep learning
models can play in the accurate differentiation between benign and malignant
breast tumors using histopathological imaging data. The investigation utilized
a diverse array of convolutional neural network (CNN) architectures, including
MobileNetV3, EfficientNetB1, VGG16, and ResNet50V2, to assess their efficacy
in classifying breast cancer images from the Breast Cancer Histopathological Im-
age Classification (BreakHis) dataset. This comprehensive evaluation not only
provides insights into the relative performance of these models but also under-
scores the broader implications for the application of deep learning in medical
diagnostics.

One of the key conclusions of this research is the recognition that deep learn-
ing models, when appropriately designed and trained, have the potential to sig-
nificantly improve diagnostic accuracy in breast cancer detection. Among the
models evaluated, EfficientNetB1 emerged as a promising architecture, achieving
the highest ROC-AUC score of 0.8767. This result indicates that EfficientNetB1
is highly effective at distinguishing between benign and malignant tumors. The
compound scaling method employed by EfficientNetB1, which optimizes the bal-
ance between network depth, width, and resolution, proved to be instrumental
in achieving this high level of performance. This scaling approach allows the
model to efficiently handle the complexities of histopathological images, which
often exhibit significant variations in texture, structure, and color.

Despite its strong performance, the study also identified a critical limitation of
the EfficientNetB1 model: a relatively high rate of false positives. In the context
of breast cancer diagnosis, false positives can lead to unnecessary anxiety for pa-
tients, additional testing, and potentially harmful interventions. Therefore, while
EfficientNetB1 demonstrates strong potential, it is clear that further refinement
is needed to reduce the occurrence of false positives and enhance the model’s re-
liability in clinical practice. This could involve the integration of additional data,
the development of more sophisticated preprocessing techniques, or the refine-
ment of the model’s architecture to better distinguish between subtle variations
in benign and malignant tissue.

The CNN model, despite being simpler than the other architectures evaluated,
achieved the highest accuracy in this study. This finding is noteworthy as it
suggests that, in resource-limited settings, simpler models like CNNs could offer
a viable solution for breast cancer diagnosis. The ability of a basic CNN to
deliver high accuracy with fewer computational requirements positions it as a
practical option for deployment in regions with limited access to advanced medical
infrastructure. This highlights the importance of considering not only the raw
performance metrics of a model but also its suitability for the specific context in
which it will be used.

The evaluation of VGG16 and ResNet50V2 also provided insights into the
trade-offs between model complexity, accuracy, and computational efficiency. VGG16,
while achieving high accuracy, was found to be computationally intensive and
less suitable for real-time clinical applications due to its large number of parame-
ters and high memory requirements. However, its architecture remains useful for
transfer learning, where pre-trained weights can be fine-tuned for specific tasks
with limited data. ResNet50V2, on the other hand, demonstrated the advan-
tages of residual learning in enabling deeper networks without suffering from the
degradation problem. This capability makes ResNet50V2 a strong candidate for
applications where high accuracy is required, and computational resources are
available.

Another important conclusion drawn from this research is the value of data
augmentation and preprocessing techniques in enhancing the robustness and gen-
eralizability of deep learning models. The study employed a range of augmen-
tation methods, including random brightness adjustments, flips, and rotations,
which helped the models better handle variations in image orientation and light-
ing. These techniques are important in medical image analysis, where variability
in image acquisition can introduce noise and artifacts that complicate the di-
agnostic process. By improving the models’ ability to generalize across different
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imaging conditions, data augmentation contributes to more reliable and consistent
performance in real-world clinical scenarios.

The findings of this research also shows the broader potential of artificial in-
telligence (AI) and deep learning in transforming medical diagnostics. As the
volume of medical imaging data continues to grow, the demand for automated
tools that can assist clinicians in making accurate and timely diagnoses is in-
creasing. Deep learning models, with their ability to learn complex patterns and
relationships within large datasets, are uniquely positioned to meet this demand.
The success of models like EfficientNetB1 in this study demonstrates that AI can
achieve performance levels that are competitive with, or even surpass, those of
human experts in certain tasks. However, the deployment of these models in
clinical practice requires careful consideration of their limitations, including the
need to minimize false positives and ensure interpretability and transparency in
decision-making processes.

Several avenues for future research and development emerge from this study.
One promising direction is the exploration of ensemble methods, where multiple
models are combined to leverage their complementary strengths. By integrating
the outputs of different architectures, it may be possible to reduce the incidence
of false positives and improve overall diagnostic accuracy. Additionally, future re-
search could investigate the incorporation of multimodal data, such as combining
histopathological images with genomic or clinical data, to provide a more compre-
hensive assessment of tumor characteristics. This could lead to the development
of more personalized diagnostic tools that take into account the unique biological
and clinical context of each patient.

In medical settings, it is crucial that AI-driven decisions can be understood
and validated by clinicians (Sisodia et al., 2020) (Reddy, 2018). Techniques such
as attention mechanisms, saliency maps, and model visualization can help in
making the decision-making process of deep learning models more transparent.
This would not only increase clinician trust in AI tools but also provide insights
into the features and patterns that are most indicative of malignancy, potentially
leading to new discoveries in cancer pathology.
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