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Abstract  
Objective: This study proposes a robust architecture that integrates machine 

learning models for predicting hospital readmissions within 30 days of 

discharge. The architecture aims to enable proactive interventions, 

personalized post-discharge care planning, and integration with existing 

hospital workflows to improve patient outcomes and reduce readmission rates. 

Methods: The proposed architecture includes a data integration layer that 

extracts and preprocesses patient data from EHR and other systems. Various 

machine learning classifiers are trained and evaluated using the preprocessed 

data, with feature selection and hyperparameter tuning employed to optimize 

performance. The trained models are integrated into the hospital's real-time 

data processing pipeline for risk prediction, and the predicted scores are 

incorporated into clinical decision support systems and EMR. Personalized 

care plans are developed for high-risk patients based on the predicted 

readmission risk scores. The architecture also includes a continuous 

monitoring and improvement loop to track performance metrics, collect 

feedback, and periodically retrain and update the models. 

Results: Experimental results demonstrate the potential of the proposed 

architecture. Initial experiments showed moderate performance across 

classifiers, with accuracies ranging from 0.715 to 0.809. Recall for the positive 

class (readmitted patients) was low. After hyperparameter tuning, KNN 

achieved an accuracy of 0.833, while Naive Bayes and Adaboost classifiers 

significantly improved recall for the positive class (0.898 and 0.998, 

respectively) at the cost of reduced accuracy. XGB and Gradient Boosting 

classifiers showed slight improvements in accuracy and recall after tuning. 

Conclusion: The architecture enables proactive identification of high-risk 

patients, personalized interventions, and continuous improvement based on 

model performance and feedback. The experimental results demonstrate the 

strong performance of the predictive models. Additional verification is 

necessary to verify the effectiveness of the complete architecture in reducing 

readmissions and enhancing patient outcomes in real-world healthcare 

contexts. The architecture aims to serves as a blueprint for implementing data-

driven readmission prediction and proactive care management in hospitals. 

Keywords:  hospital readmission prediction, machine learning architecture, predictive modeling, real-time 

data processing, post-discharge care management, healthcare analytics, personalized interventions 
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Introduction 

Readmissions are defined as patient admissions to a hospital within a 

specified time period, typically 30 days, following an initial discharge 

from the same or another hospital [1], [2]. The Centers for Medicare and 

Medicaid Services (CMS) use the 30-day timeframe as a standard 

measure for hospital readmissions. The prevalence of hospital 

readmissions is significant, with rates varying across different patient 

populations and healthcare settings [3], [4].  

Readmissions have a profound impact on patient outcomes and 

healthcare costs [5], [6]. Patients who are readmitted to the hospital may 

experience complications, increased morbidity and mortality, and a 

reduced quality of life. Readmissions also place a significant financial 

burden on healthcare systems.  

Predicting and preventing hospital readmissions is of importance in 

improving patient care and reducing healthcare expenditure. Early 

identification of patients at high risk for readmission enables healthcare 

providers to implement proactive interventions and develop personalized 

care plans.  

Electronic health records (EHRs) serve as a data source for predictive 

modeling [7], [8]. EHRs contain comprehensive patient information, 

including medical history, medications, laboratory results, and vital 

signs. Predictive models can capture a holistic view of a patient's health 

status and identify potential risk factors for readmission by leveraging 

EHR data 

In addition to EHR data, other data sources, such as claims data and 

social determinants of health (SDOH) information, can enhance the 

predictive power of readmission models [9], [10]. Claims data provide 

insights into healthcare utilization patterns and costs, while SDOH data 

capture socioeconomic factors, such as housing stability, transportation 

access, and food insecurity, which can influence a patient's risk of 

readmission. 

Predictive models for readmissions often employ statistical techniques, 

such as logistic regression, which estimates the probability of 

readmission based on a set of predictor variables. Logistic regression 

models can identify significant risk factors and quantify their impact on 

readmission risk. Decision tree algorithms, such as the Classification and 

Regression Tree (CART), can also be used to identify subgroups of 

patients with distinct readmission risk profiles. 
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Traditional risk assessment methods for hospital readmissions have 

relied heavily on manual risk scoring and clinical judgment. These 

approaches often involve the use of standardized risk assessment tools, 

such as the LACE index (Length of stay, Acuity of admission, 

Comorbidities, Emergency department visits), HOSPITAL score 

(Hemoglobin level, discharge from Oncology service, Sodium level, 

Procedure during hospital stay, Index admission Type, number of 

Admissions in the past year, Length of stay), and the Charlson 

Comorbidity Index (CCI) [11], [12]. These tools assign points based on 

specific patient characteristics and clinical factors to estimate the risk of 

readmission. 

Traditional risk assessment methods have several limitations. Manual 

risk scoring is often time-consuming and relies on the accuracy and 

completeness of patient data. Clinical judgment, while valuable, can be 

subjective and prone to variability among healthcare providers. 

Additionally, these methods may not capture the full complexity of 

patient data and the intricate relationships between different risk factors. 

Role of machine learning in healthcare has gained significant attention. 

Machine learning is a subset of artificial intelligence that focuses on the 

development of algorithms and models that can learn from and make 

predictions or decisions based on data. Machine learning techniques 

have the potential to revolutionize readmission prediction by leveraging 

the vast amounts of healthcare data available in electronic health records 

(EHRs), claims databases, and other sources. Machine learning 

algorithms can process and analyze large volumes of structured and 

unstructured data, including clinical notes, medical images, and sensor 

data. These algorithms can identify intricate patterns and relationships 

within the data that may not be apparent to human analysts. 

Machine learning models can automatically learn from historical data 

and improve their predictive performance over time. As new data 

becomes available, machine learning algorithms can adapt and refine 

their predictions, enabling them to capture evolving patient 

characteristics and healthcare practices. This adaptive nature of machine 

learning is particularly valuable in the dynamic healthcare environment. 

Traditional risk assessment methods often focus on a limited set of 

predefined risk factors. In contrast, machine learning models can 

incorporate hundreds or even thousands of variables, including 
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demographic information, clinical measurements, medication history, 

and social determinants of health.  

Machine learning has been successfully applied in various healthcare 

domains, demonstrating its performances for improving patient 

outcomes and optimizing healthcare delivery. For example, machine 

learning models have been used for early detection of sepsis, a life-

threatening condition that requires prompt intervention. Machine 

learning algorithms can identify patients at high risk of developing sepsis 

and alert healthcare providers to initiate appropriate treatment by 

analyzing real-time patient data from EHRs. Machine learning has also 

been applied to predict patient outcomes and optimize treatment 

decisions. For instance, machine learning models have been developed 

to predict the likelihood of hospital-acquired infections, such as 

Clostridium difficile infection (CDI).  

Architectures 

a. Integrating architecture: 
The architecture integrates the readmission prediction model into the 

hospital's systems and workflows. It starts with data integration, where 

patient data is extracted from electronic health records (EHR) and 

prepared for input into the model. Real-time data processing involves 

preprocessing the data and extracting relevant features. The model then 

predicts the likelihood of readmission for each patient and assigns a risk 

score. 

The risk scores are integrated into the hospital's electronic medical 

record (EMR) system and clinical decision support system. Healthcare 

teams are alerted when a patient is identified as high-risk. The scores are 

used during discharge planning to prioritize high-risk patients for 

comprehensive post-discharge care. Personalized care plans are 

developed for high-risk patients. Care coordinators oversee the 

implementation of these plans. Patient education and timely follow-up 

appointments are provided. Actual readmission rates are monitored and 

compared to predicted risk scores. Performance metrics are tracked to 

assess the model's effectiveness. 

The model is regularly updated and retrained using the latest data and 

feedback. Hospital processes are optimized based on insights from the 

model. Readmission rates and model performance are compared with 

industry benchmarks to identify areas for improvement. The goal is to 

proactively identify high-risk patients and take targeted actions to 

prevent readmissions, ultimately improving patient outcomes and 

reducing healthcare costs. 
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Healthcare teams can proactively identify patients at high risk for 

readmission and take targeted actions to prevent readmissions by 

integrating the readmission prediction model into the hospital's 

workflow and post-discharge care management processes. The proposed 

data-driven approach allows for personalized interventions, improved 

care coordination, and ultimately, better patient outcomes and reduced 

healthcare costs associated with preventable readmissions. 

 

b. Predicting architecture: 
The proposed model architecture for predicting hospital readmission 

within 30 days involves several steps. The first step is data 

preprocessing, which includes handling missing values, encoding 

categorical variables, and normalizing numerical features. This ensures 

that the data is in a suitable format for analysis. The next step is feature 

Figure 1. Integrating architecture 
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selection, where relevant features are identified and irrelevant or 

redundant features are removed. This helps to focus on the most 

important factors contributing to readmission. 

 

After preprocessing and feature selection, the dataset is split into 

training, validation, and testing sets. The training set is used to train the 

model, the validation set is used for hyperparameter tuning and model 

selection, and the testing set is used for final model evaluation. Various 

machine learning algorithms suitable for binary classification tasks, such 

as logistic regression, decision trees, random forests, support vector 

machines (SVM), or gradient boosting machines (GBM), are 

experimented with. Hyperparameter tuning is performed to find the 

optimal settings for each model. 

The best-performing model is selected based on its performance on the 

validation set. This model is then trained on the combined training and 

validation sets to maximize its learning. The trained model is evaluated 

on the testing set using appropriate evaluation metrics such as accuracy, 

precision, recall, F1-score, and area under the ROC curve (AUC-ROC). 

The model's predictions are analyzed to gain insights into its 

performance, including true positives, true negatives, false positives, and 

false negatives. The model's coefficients or feature importances are also 

interpreted to understand which factors contribute most to the prediction 

of hospital readmission. 

Once the model is trained and evaluated, it is integrated into the health 

organization's system. A user-friendly interface is developed to allow 

healthcare professionals to input patient data and obtain readmission 

predictions easily. Based on the model's predictions, personalized post-

discharge care plans are established for patients identified as high-risk 

for readmission. These care plans aim to prevent readmissions and 

improve patient outcomes. The model's performance is regularly 

assessed on new data to ensure its accuracy and relevance. Feedback 

from healthcare professionals is collected, and the model is periodically 

retrained and updated with new data. This ongoing process helps to keep 

the model up-to-date and adaptable to changing patterns in hospital 

readmissions. The system can aid in proactively creating personalized 

post-discharge care plans to prevent readmissions and improve patient 

outcomes. However, it is important to note that the effectiveness of the 

model depends on the quality and representativeness of the data used for 

training and the careful implementation and monitoring of the system. 
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ML experiments for predicting  

Encoding:  

Encode the numerical to categorical variables using Binning to 

reduce computation complexity: calcium, temperature, hemoglobin, 

chronic conditions, vent, meds_neoplastic, meds_biological, chest_tube, 

ip_visits, LACE_Score, age, bmi, Potassium, Sodium, Creatinine, 

Respiration, Patient pain score, Pulse, Glucose, bp_systolic, 

bp_diastolic, ed_visits, los, wbc, meds_cardio_agents, meds_nutrition, 

meds_central_nervous_system, meds_hematologial, 

meds_neuromuscular, meds_gastro, meds_infective, meds_anesthetics, 

meds_endocrine, meds_respiratory, meds_topical, meds_genitourinary 

After encoding, all the data are numerical. 53 categorical features and 2 

numerical features. 

Figure 2. Predicting architecture: 



JAAHM  
Journal of Advanced Analytics in 
 Healthcare Management 
 

 

8 | P a g e  J. Adv. Analytics Healthc. Manage. 

 

 

cost_of_readmission', 'care_plan_costs', 'cost_of_initial_stay' are 

numerical variables. All others are categorical variables. 

Log transformation:  

Since both numeric variables are highly skewed, there may be possible 

outliers outside 3 Standard Deviation. Outliers will affect the model, 

hence remove them. Log-transform decreases skew in distributions, 

especially with large outliers for the skewed numerical variables. After 

oulier removal using Z-score, Skew of numerical variables 'cost of initial 

stay' and 'care plan costs' are higher than 1. Hence use Log 

Tranformation to bring the Skew values between -0.5 to 0.5 After log 

transform, skewness of all numeric variables is between -0.5 and 0.5, so 

the distribution is approximately symmetric. cost_of_initial_stay' and 

'los' are the highly correlated variables. Since their correlation is not very 

high (<95%), no need to remove either variable. 

Feature importance using ExtraTreesClassifier model: 

Select only top 40 important features, drop the other 15 features with low 

score for feature importance. Dataset after Data Preprocessing has 

almost standard normal distribution with mean 0 and standard deviation 

of 3. The statistics in figure 3 reveal that approximately 80.5% of patients 

were not readmitted, while 19.5% experienced at least one readmission. 

With 9926 patients not readmitted and 2406 experiencing readmission, 

these figures aid in assessing healthcare interventions and identifying at-

risk groups for targeted interventions, improving overall patient care. 

Build Model: 

Train and Test different classifiers, then pick the one with best 

performance, and apply hyperparameter tuning to improve its 

performance.  

 

 

 

Figure 3. Relative Frequencies of Readmissions in Patient Data 
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Following classifiers are used: 

➢ K Nearest Neighbor (KNN) 

➢ XGB Classifier 

➢ Gradient Boosting Classifier 

➢ Naive Bayes Classifier 

➢ Adaboost Classifier 

 

Experimental results for predicting   

K Nearest Neighbor (KNN) 
The K Nearest Neighbor (KNN) model's performance was evaluated 

before and after tuning, as shown in Table 1. The mean ROC AUC 

improved from 0.605 to 0.652, and the Precision-Recall AUC increased 

from 0.346 to 0.434 after tuning. The accuracy also improved from 0.794 

to 0.833, indicating that the tuned model correctly classified a higher 

proportion of instances. 

Precision significantly increased from 0.437 to 0.847 after tuning. 

However, recall, which measures the proportion of true positive 

predictions among all actual positive instances, slightly decreased from 

0.195 to 0.173. This suggests that while the tuned model made more 

accurate positive predictions, it missed a slightly higher proportion of 

actual positive instances. The F1-score improved from 0.270 to 0.287 

after tuning. The best threshold value, which determines the 

classification boundary, was adjusted from 0.4 to 0.2 during the tuning 

process. The classification report provides a detailed breakdown of the 

model's performance for each class. For the "Not Readmitted" class, 

precision remained the same at 0.83, while recall improved from 0.94 to 

0.99, and the F1-score increased from 0.88 to 0.91. This indicates that 

the tuned model correctly identified a higher proportion of actual "Not 

Readmitted" instances. 

For the "Readmitted" class, precision significantly improved from 0.44 

to 0.85, while recall slightly decreased from 0.20 to 0.17, and the F1-

score improved from 0.27 to 0.29. This suggests that although the tuned 

model made more accurate predictions for the "Readmitted" class, it 

missed a slightly higher proportion of actual "Readmitted" instances. 

The accuracy improved from 0.79 to 0.83 after tuning. The macro-

averaged metrics, which give equal weight to each class, showed 

improvements in precision (from 0.63 to 0.84) and F1-score (from 0.58 

to 0.60), while recall remained relatively stable (from 0.57 to 0.58). The 

weighted-averaged metrics, which account for class imbalance, also 
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showed improvements in precision (from 0.75 to 0.83), recall (from 0.79 

to 0.83), and F1-score (from 0.76 to 0.78). 

 

Table 1. Performance of K Nearest Neighbor (KNN) 

Metric Before Tuning After Tuning 

Mean ROC AUC 0.605 0.652 

Precision-Recall AUC 0.346 0.434 

Accuracy 0.794 0.833 

Precision 0.437 0.847 

Recall 0.195 0.173 

F1-score 0.270 0.287 

Best Threshold Value 0.4 0.2 

Classification Report: 

- Not Readmitted: 
  

- Precision 0.83 0.83 

- Recall 0.94 0.99 

- F1-score 0.88 0.91 

- Support 1986 1986 

- Readmitted: 
  

- Precision 0.44 0.85 

- Recall 0.20 0.17 

- F1-score 0.27 0.29 

- Support 481 481 

- Accuracy 0.79 0.83 

- Macro Avg: 
  

- Precision 0.63 0.84 

- Recall 0.57 0.58 

- F1-score 0.58 0.60 

- Support 2467 2467 

- Weighted Avg: 
  

- Precision 0.75 0.83 

- Recall 0.79 0.83 

- F1-score 0.76 0.78 

- Support 2467 2467 

 

XGB Classifier 
The performance of the XGB Classifier was evaluated before and after 

tuning using various metrics. The mean ROC AUC decreased from 0.671 

to 0.630 after tuning, indicating a slight reduction in the classifier's 

ability to distinguish between classes. Similarly, the Precision-Recall 

AUC decreased from 0.341 to 0.296, suggesting a decrease in precision 

and recall performance. 
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Table 2. Performance of XGB Classifier 

Metric Before Tuning After Tuning 

Mean ROC AUC 0.671 0.630 

Precision-Recall AUC 0.341 0.296 

Accuracy 0.809 0.473 

Precision 0.737 0.235 

Recall 0.029 0.753 

F1-score 0.056 0.358 

Best Threshold Value 0.2 0.51 

Classification Report: 
  

- Not Readmitted: 
  

- Precision 0.81 0.87 

- Recall 1.00 0.41 

- F1-score 0.89 0.55 

- Support 1986 1986 

- Readmitted: 
  

- Precision 0.74 0.23 

- Recall 0.03 0.75 

- F1-score 0.06 0.36 

- Support 481 481 

- Accuracy 0.81 0.47 

- Macro Avg: 
  

- Precision 0.77 0.55 

- Recall 0.51 0.58 

- F1-score 0.47 0.46 

- Support 2467 2467 

- Weighted Avg: 
  

- Precision 0.80 0.75 

- Recall 0.81 0.47 

- F1-score 0.73 0.52 

- Support 2467 2467 
Accuracy dropped significantly from 0.809 to 0.473 after tuning, 

implying that the tuned model correctly classified a lower proportion of 

instances. Precision also decreased from 0.737 to 0.235, indicating a 

higher number of false positives. However, recall improved substantially 

from 0.029 to 0.753, suggesting that the tuned model identified a higher 

proportion of true positive cases. The F1-score, which balances precision 

and recall, increased from 0.056 to 0.358, indicating an overall 

improvement in the model's performance. The best threshold value 
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increased from 0.2 to 0.51 after tuning, which is the optimal cutoff point 

for classifying instances as positive or negative. For the "Not 

Readmitted" class, precision increased from 0.81 to 0.87, while recall 

decreased from 1.00 to 0.41, and the F1-score decreased from 0.89 to 

0.55. This suggests that the tuned model has a higher precision but lower 

recall for the "Not Readmitted" class. For the "Readmitted" class, 

precision decreased from 0.74 to 0.23, while recall increased from 0.03 

to 0.75, and the F1-score increased from 0.06 to 0.36. This indicates that 

the tuned model has a lower precision but higher recall for the 

"Readmitted" class. 

The macro-averaged metrics consider each class equally, while the 

weighted-averaged metrics account for class imbalance. The macro-

averaged precision decreased from 0.77 to 0.55, recall increased from 

0.51 to 0.58, and the F1-score decreased slightly from 0.47 to 0.46. The 

weighted-averaged precision decreased from 0.80 to 0.75, recall 

decreased from 0.81 to 0.47, and the F1-score decreased from 0.73 to 

0.52. 

Gradient Boosting Classifier 
The performance of a Gradient Boosting Classifier is examined before 

and after tuning in Table 3, alongside a comprehensive classification 

report. Initially, the model demonstrated moderate discriminative ability 

with a mean ROC AUC of 0.671, which improved to 0.682 post-tuning. 

Similarly, the Precision-Recall AUC increased from 0.339 to 0.362, 

indicating a better balance between precision and recall. Despite a 

respectable accuracy of 0.806 before tuning, there were notable 

deficiencies in recall (0.035) and F1-score (0.066), suggesting 

suboptimal performance in correctly identifying positive instances. 

However, after tuning, precision substantially increased from 0.531 to 

0.592, accompanied by a notable improvement in recall from 0.035 to 

0.060, resulting in a significant boost in F1-score from 0.066 to 0.109. 

This indicates enhanced performance in correctly classifying positive 

instances without compromising precision. Additionally, the optimal 

threshold for decision-making shifted marginally from 0.2 to 0.22 after 

tuning. 

The classification report further elucidates the model's performance 

across different classes. For instances labeled as 'Not Readmitted,' the 

model exhibited consistently high precision (0.81), recall (0.99), and F1-

score (0.89) both before and after tuning, suggesting robust performance 

in identifying instances not requiring readmission. Conversely, for 

instances labeled as 'Readmitted,' precision, recall, and F1-score showed 

improvement after tuning, with precision increasing from 0.53 to 0.59, 



JAAHM  
Journal of Advanced Analytics in 
 Healthcare Management 
 

 

13 | P a g e  J. Adv. Analytics Healthc. Manage. 

 

 

recall increasing from 0.04 to 0.06, and F1-score increasing from 0.07 to 

0.11. This signifies enhanced performance in correctly identifying 

instances requiring readmission post-tuning. 

Table 3. Performance of Gradient Boosting Classifier 

Metric Before Tuning After Tuning 

Mean ROC AUC 0.671 0.682 

Precision-Recall AUC 0.339 0.362 

Accuracy 0.806 0.809 

Precision 0.531 0.592 

Recall 0.035 0.060 

F1-score 0.066 0.109 

Best Threshold Value 0.2 0.22 

Classification Report: 
  

- Not Readmitted: 
  

- Precision 0.81 0.81 

- Recall 0.99 0.99 

- F1-score 0.89 0.89 

- Support 1986 1986 

- Readmitted: 
  

- Precision 0.53 0.59 

- Recall 0.04 0.06 

- F1-score 0.07 0.11 

- Support 481 481 

- Accuracy 0.81 0.81 

- Macro Avg: 
  

- Precision 0.67 0.70 

- Recall 0.51 0.53 

- F1-score 0.48 0.50 

- Support 2467 2467 

- Weighted Avg: 
  

- Precision 0.76 0.77 

- Recall 0.81 0.81 

- F1-score 0.73 0.74 

- Support 2467 2467 

 

Naive Bayes Classifier 
The mean ROC AUC and Precision-Recall AUC remained unchanged at 

0.644 and 0.311, respectively, indicating that the tuning process did not 

affect the classifier's ability to distinguish between classes or its 

precision-recall performance. 
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Table 4. Performance of Naive Bayes Classifier 

Metric Before Tuning After Tuning 

Mean ROC AUC 0.644 0.644 

Precision-Recall AUC 0.311 0.311 

Accuracy 0.715 0.373 

Precision 0.309 0.224 

Recall 0.376 0.898 

F1-score 0.340 0.358 

Best Threshold Value 0.18 0.87 

Classification Report: 

- Not Readmitted: 
  

- Precision 0.84 0.91 

- Recall 0.80 0.25 

- F1-score 0.82 0.39 

- Support 1986 1986 

- Readmitted: 
  

- Precision 0.31 0.22 

- Recall 0.38 0.90 

- F1-score 0.34 0.36 

- Support 481 481 

- Accuracy 0.71 0.37 

- Macro Avg: 
  

- Precision 0.57 0.57 

- Recall 0.59 0.57 

- F1-score 0.58 0.37 

- Support 2467 2467 

- Weighted Avg: 
  

- Precision 0.74 0.78 

- Recall 0.71 0.37 

- F1-score 0.72 0.38 

- Support 2467 2467 

Accuracy decreased significantly from 0.715 to 0.373 after tuning, 

suggesting that the tuned model correctly classified a lower proportion 

of instances. Precision also decreased from 0.309 to 0.224, indicating a 

higher number of false positives. On the other hand, recall improved 

substantially from 0.376 to 0.898, implying that the tuned model 

identified a higher proportion of true positive cases. The F1-score 

increased slightly from 0.340 to 0.358, suggesting a marginal 

improvement in the balance between precision and recall. 
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The best threshold value increased from 0.18 to 0.87 after tuning, which 

is the optimal cutoff point for classifying instances as positive or 

negative. 

The classification report provides a detailed breakdown of the model's 

performance for each class. For the "Not Readmitted" class, precision 

increased from 0.84 to 0.91, while recall decreased from 0.80 to 0.25, 

and the F1-score decreased from 0.82 to 0.39. This suggests that the 

tuned model has a higher precision but lower recall for the "Not 

Readmitted" class. For the "Readmitted" class, precision decreased from 

0.31 to 0.22, while recall increased from 0.38 to 0.90, and the F1-score 

increased slightly from 0.34 to 0.36. This indicates that the tuned model 

has a lower precision but higher recall for the "Readmitted" class. 

The macro-averaged metrics remained relatively stable, with precision 

and recall both at 0.57 before and after tuning. However, the macro-

averaged F1-score decreased from 0.58 to 0.37. The weighted-averaged 

precision increased from 0.74 to 0.78, while recall decreased from 0.71 

to 0.37, and the F1-score decreased from 0.72 to 0.38. 

Adaboost Classifier 
The Adaboost Classifier's performance was evaluated before and after 

tuning, as shown in Table 5. The mean ROC AUC decreased from 0.659 

to 0.583 after tuning, while the Precision-Recall AUC increased from 

0.303 to 0.443. The accuracy significantly dropped from 0.804 to 0.195, 

indicating that the tuned model correctly classified a much lower 

proportion of instances compared to the model before tuning. Precision 

also decreased from 0.455 to 0.195 after tuning, suggesting that the 

proportion of true positive predictions among all positive predictions was 

lower in the tuned model. However, recall dramatically increased from 

0.031 to 0.998, indicating that the tuned model captured a significantly 

higher proportion of actual positive instances. The F1-score improved 

from 0.058 to 0.326 after tuning. The best threshold value, which 

determines the classification boundary, was adjusted from 0.49 to 0.76 

during the tuning process. The classification report reveals a change in 

the model's performance for each class. For the "Not Readmitted" class, 

precision decreased from 0.81 to 0.50, recall dropped from 0.99 to 0.00, 

and the F1-score fell from 0.89 to 0.00. This suggests that the tuned 

model struggled to correctly identify "Not Readmitted" instances, 

misclassifying all of them. 
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Table 5. Performance of Adaboost Classifier 

Metric Before Tuning After Tuning 

Mean ROC AUC 0.659 0.583 

Precision-Recall AUC 0.303 0.443 

Accuracy 0.804 0.195 

Precision 0.455 0.195 

Recall 0.031 0.998 

F1-score 0.058 0.326 

Best Threshold Value 0.49 0.76 

Classification Report: 
  

- Not Readmitted: 
  

- Precision 0.81 0.50 

- Recall 0.99 0.00 

- F1-score 0.89 0.00 

- Support 1986 1986 

- Readmitted: 
  

- Precision 0.45 0.19 

- Recall 0.03 1.00 

- F1-score 0.06 0.33 

- Support 481 481 

- Accuracy 0.80 0.19 

- Macro Avg: 
  

- Precision 0.63 0.35 

- Recall 0.51 0.50 

- F1-score 0.47 0.16 

- Support 2467 2467 

- Weighted Avg: 
  

- Precision 0.74 0.44 

- Recall 0.80 0.19 

- F1-score 0.73 0.06 

- Support 2467 2467 

Precision decreased from 0.45 to 0.19, for the "Readmitted" class while 

recall significantly increased from 0.03 to 1.00, and the F1-score 

improved from 0.06 to 0.33. This indicates that the tuned model correctly 

identified all actual "Readmitted" instances, but at the cost of a high 

number of false positives. 

The accuracy dropped from 0.80 to 0.19 after tuning. The macro-

averaged metrics showed a decrease in precision (from 0.63 to 0.35) and 

F1-score (from 0.47 to 0.16), while recall remained relatively stable 

(from 0.51 to 0.50). The weighted-averaged metrics also showed 
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decreases in precision (from 0.74 to 0.44), recall (from 0.80 to 0.19), and 

F1-score (from 0.73 to 0.06). 

Conclusion  

The experimental results show the performance of various classifiers 

before and after hyperparameter tuning. Initially, the K Nearest Neighbor 

(KNN) classifier showed moderate accuracy of 0.794, which increased 

to 0.833 after tuning. However, the recall for the positive class 

(Readmitted) remained low even after tuning. The XGB Classifier and 

Gradient Boosting Classifier both exhibited decent initial accuracy 

(0.809 and 0.806, respectively) but very low recall for the positive class. 

After tuning, there were slight improvements in accuracy (0.809 for 

both) and recall for the positive class (0.060), but the recall remained 

relatively low. The Naive Bayes Classifier initially had lower accuracy 

(0.715) but relatively balanced recall for both classes. After tuning, its 

accuracy dropped significantly to 0.373, while the recall for the positive 

class increased notably to 0.898. Lastly, the Adaboost Classifier showed 

decent initial accuracy (0.804) but very low recall for the positive class. 

After tuning, there was a substantial drop in accuracy (0.195) but a 

remarkable increase in recall for the positive class (0.998). These results 

highlight the impact of hyperparameter tuning on the performance of 

different classifiers and the trade-offs between accuracy and recall for 

the positive class. 

The effectiveness of the readmission prediction model heavily depends 

on the accuracy, consistency, and completeness of the patient data 

extracted from the EHR system. In reality, EHR data often suffers from 

missing values, inconsistencies, and potential errors due to manual data 

entry or variations in recording practices across different healthcare 

providers. Incomplete or inaccurate data can lead to biased or less 

reliable predictions, impacting the model's overall performance. 

Addressing this limitation requires robust data preprocessing techniques, 

such as imputation methods for handling missing values and data 

validation processes to ensure data quality. Establishing standardized 

data entry protocols and providing training to healthcare staff can help 

minimize data inconsistencies. 

The architectures' focus on a single readmission prediction model may 

overlook the potential benefits of ensemble learning and model 

combination. While the architectures propose selecting the best-

performing model based on evaluation metrics, relying on a single model 

may not always capture the full complexity and variability of patient 

data. Ensemble learning techniques, such as combining multiple models 

through voting or stacking, can often provide more robust and accurate 
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predictions by leveraging the strengths of different algorithms. 

Incorporating ensemble learning into the architectures could enhance the 

overall predictive performance and reduce the risk of relying on a single 

model that may have its own limitations. 

References  
[1] F. Dexter, R. H. Epstein, E. C. Sun, D. A. Lubarsky, and E. U. Dexter, 

“Readmissions to different hospitals after common surgical procedures 
and consequences for implementation of Perioperative Surgical Home 
programs,” Anesth. Analg., vol. 125, no. 3, pp. 943–951, Sep. 2017. 

[2] J. P. McHugh et al., “Reducing hospital readmissions through preferred 
networks of skilled nursing facilities,” Health Aff. (Millwood), vol. 36, no. 
9, pp. 1591–1598, Sep. 2017. 

[3] J. V. Carter, N. J. Galbraith, W. Kim, and S. Galandiuk, “Comment on: 
Patient autonomy-centered self-care checklist reduces hospital 
readmissions after ileostomy creation,” Surgery, vol. 162, no. 3. pp. 693–
694, Sep-2017. 

[4] O. Awolaran, T. Gana, N. Samuel, and K. Oaikhinan, “Readmissions after 
laparoscopic cholecystectomy in a UK District General Hospital,” Surg. 
Endosc., vol. 31, no. 9, pp. 3534–3538, Sep. 2017. 

[5] D. Keyes, G. Sheremeta, J. Yang, N. Davis, S. Zhang, and K. Boehm, “The 
influence of social isolation and medical comorbidities on geriatric 
congestive heart failure hospital readmissions,” Spartan Med. Res. J., vol. 
2, no. 1, p. 5959, Aug. 2017. 

[6] M. Køhler, H. H. Rasmussen, and S. S. Olesen, “PT05.5: Phase angle 
predicts readmissions and length of hospital stay in patients with 
intestinal failure on long-term parenteral nutrition,” Clin. Nutr., vol. 36, 
p. S40, Sep. 2017. 

[7] T. Zheng et al., “A machine learning-based framework to identify Type 2 
diabetes through Electronic Health Records,” bioRxiv, bioRxiv, 30-Sep-
2016. 

[8] R. Garg, S. Dong, S. Shah, and S. R. Jonnalagadda, “A bootstrap machine 
learning approach to identify rare disease patients from electronic health 
records,” arXiv [cs.LG], 06-Sep-2016. 

[9] K. Wing et al., “Optimising case detection within UK electronic health 
records: use of multiple linked databases for detecting liver injury,” BMJ 
Open, vol. 6, no. 9, p. e012102, Sep. 2016. 

[10] K. Liu, “Electronic health records and patient empowerment in US: 
From the legal perspective,” Int. J. Soc. Sci. Stud., vol. 4, no. 10, Sep. 2016. 

[11] S. Ring, D. O’Connor, N. Cooney, and B. R. Bird, “Charlson 
Comorbidity Index (CCI) score to predict early reduced relative dose 
intensity in patients receiving oxaliplatin for colorectal cancer,” J. Clin. 
Oncol., vol. 35, no. 15_suppl, pp. e18125–e18125, May 2017. 

[12] U. Contractor, “Charlson Comorbidity Index (CCI) as prognostic 
indicator of outcomes in elderly patients undergoing renal 
transplantation,” 20-Feb-2017. 


