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Abstract  

Cloud computing has emerged as a cornerstone for modern industries, offering scalable and flexible 

resources to meet growing computational demands. However, managing fluctuating workloads in cloud 

data centers poses significant challenges, often leading to inefficient resource allocation and energy 

wastage. This paper proposes a novel hybrid model combining Convolutional Neural Networks (CNN) and 

Bidirectional Long Short-Term Memory (BiLSTM) networks to address the problem of cloud load 

prediction. The CNN-BiLSTM model leverages the strength of CNNs for spatial feature extraction and 

BiLSTMs for capturing temporal dependencies in cloud workload data, providing improved prediction 

accuracy over traditional models. A comprehensive comparison of the CNN-BiLSTM model against other 

deep learning architectures, including Backpropagation (BP), LSTM, and CNN-LSTM, demonstrates 

significant enhancements in prediction performance. The model's ability to predict cloud load more 

accurately can contribute to more efficient resource management in cloud environments. 

Keywords: Cloud computing, load prediction, CNN-BiLSTM hybrid model, Convolutional 

Neural Networks (CNNs), Bidirectional Long Short-Term Memory (BiLSTM), spatial feature 

extraction, temporal dependencies, deep learning, resource management.
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Introduction  

Cloud computing has become an indispensable part of modern industries, offering scalable and 

flexible resources to meet the increasing demand for computational power, storage, and data 

processing. From large enterprises to small-scale businesses, cloud services have transformed 

how organizations manage their IT infrastructure. With this growth, however, cloud data centers 

face significant challenges, particularly in handling fluctuating workloads as the number of users 

and applications continues to rise. These variations in workload can lead to inefficiencies in 

resource allocation, increased energy consumption, and degraded performance [1], [2]. To 

address these issues, effective load prediction is essential. Predicting future cloud load allows 

for proactive resource management, enabling cloud providers to allocate resources optimally. 

This ensures that services are delivered smoothly during peak demand periods without over-

provisioning resources, which can lead to wastage during low-demand times. Achieving this 
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balance between resource allocation and workload variability is critical for improving both the 

performance and energy efficiency of cloud data centers [3], [4]. 

Problem Statement 

Traditional load prediction methods, such as statistical time-series models like ARIMA and 

exponential smoothing, have been widely used for cloud load forecasting. However, these 

methods often fall short in handling the complexity and nonlinearity of modern cloud workloads, 

which can be highly dynamic and unpredictable [5]. Similarly, while some machine learning 

techniques like simple neural networks and LSTM (Long Short-Term Memory) networks have 

been applied to this problem, they often lack the capability to simultaneously model both the 

spatial and temporal features inherent in cloud load data. The growing complexity of cloud 

environments calls for more advanced techniques that can better capture both local patterns 

(e.g., spikes in CPU utilization) and long-term dependencies (e.g., recurring trends over time). 

Existing models such as CNN-LSTM and BiLSTM have shown promise, but there remains a gap in 

further enhancing these models to improve prediction accuracy while maintaining low 

computational cost. This paper aims to address this gap by developing an optimized hybrid 

model that combines Convolutional Neural Networks (CNNs) with Bidirectional LSTMs 

(BiLSTMs). 

The primary objective of this research is to develop a more accurate and efficient load prediction 

model for cloud computing environments. To this end, we propose a novel CNN-BiLSTM hybrid 

model that leverages CNNs for extracting spatial features and BiLSTMs for capturing both 

forward and backward temporal dependencies. This hybrid architecture is designed to improve 

the model’s ability to handle complex, dynamic cloud workloads. 

 

Figure 1. A simplified block diagram represntation of Colud service as a whole 
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Literature Review 

Cloud computing represents a multifaceted ecosystem, comprising various layers of services and 

infrastructure to deliver scalable and efficient solutions. The cloud architecture, as depicted in 

Figure 1, outlines the interaction between consumers, providers, and brokers, showcasing the 

underlying physical and orchestration layers responsible for managing cloud services. Within 

this complex structure, cloud load prediction and resource management play a pivotal role in 

ensuring optimal performance and energy efficiency. 

Cloud Load Prediction 

Effective cloud load prediction is essential for managing resources efficiently in cloud 

environments and reducing energy consumption. Traditional methods like ARIMA and 

exponential smoothing have been widely used but often fail to capture the complex and 

nonlinear nature of modern cloud workloads. As cloud computing environments become more 

complex, deep learning models, especially hybrid models combining Convolutional Neural 

Networks (CNN) and Long Short-Term Memory (LSTM), have emerged as more effective 

alternatives. These models, such as the one proposed by [6], leverage CNN for feature extraction 

and LSTM for capturing temporal patterns, improving load prediction accuracy for individual 

households. Similarly, [7]–[9], applied CNN-LSTM hybrid model for virtual machine workload 

forecasting in cloud data centers, demonstrating enhanced prediction performance over 

traditional models. 

In recent years, more advanced architectures like Bidirectional LSTMs (BiLSTMs) and their hybrid 

implementations have shown even greater promise. [10] proposed a BiLSTM-CNN hybrid model 

for predicting wind power output, highlighting its ability to capture both spatial and temporal 

dependencies, a feature critical for improving cloud load prediction. Furthermore, [11] 

demonstrated the effectiveness of multiple convolutional layers combined with LSTMs to 

further improve short-term load forecasting accuracy [12]. Other research has also explored 

integrating different deep learning models to enhance cloud load predictions. For example, [13] 

combined CNNs, GRUs, and LSTMs for short-term load forecasting, showing improved 

performance over traditional machine learning models. These hybrid models successfully tackle 

the challenges posed by the high volatility and dynamic behavior of cloud workloads, which are 

difficult to predict using linear models alone. 

AI in Resource Management 

AI-driven resource management techniques have increasingly become vital for optimizing 

energy consumption in cloud environments. CNN-LSTM hybrids, in particular, have proven 

useful for managing cloud resources, as they can process spatial features via CNN layers and 

temporal dependencies via LSTM layers. [14]–[16] used such hybrid models for short-term load 

forecasting, significantly improving accuracy by addressing both spatial and temporal 

dimensions of the data. Other studies, such as [17], implemented deep learning models 

combining CNNs and LSTMs to predict future workloads in cloud environments. This hybrid 

architecture enabled the models to capture nonlinear dependencies, leading to higher 

prediction accuracy. [18] also applied a hybrid CNN-LSTM model for short-term load forecasting 

and found that the combined approach effectively captured the nonlinear patterns in time-

series data, outperforming traditional LSTM-based methods. The integration of attention 
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mechanisms in hybrid models further enhances the capability to focus on important features 

within the data. [19] introduced an ensemble hybrid model combining CNN, LSTM, and attention 

mechanisms for energy forecasting, which achieved significant improvements in prediction 

accuracy. These AI-driven approaches for resource management in cloud environments are 

increasingly critical as workloads become more dynamic and volatile. 

The growing use of hybrid deep learning models, particularly CNN-LSTM and BiLSTM 

combinations, for cloud load prediction and resource management are seen from the review. 

These models outperform traditional methods by effectively capturing spatial and temporal 

dependencies, making them well-suited for the complex, dynamic nature of cloud workloads. 

Overview of the CNN-BiLSTM Model 

In this section, we provide an overview of the core components of the proposed hybrid model 

combining Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term Memory 

(BiLSTM) networks. This hybrid architecture is designed to leverage the strengths of both CNNs 

and BiLSTMs in handling spatial and temporal data dependencies in the context of cloud 

computing load prediction. The fusion of these two neural networks allows for enhanced feature 

extraction and prediction capabilities, making the model well-suited to the complex, dynamic 

nature of cloud workload data. 

Convolutional Neural Networks (CNN) for Spatial Feature Extraction 

CNNs are a class of deep neural networks particularly effective in extracting spatial features from 

input data through the application of convolutional filters. Originally designed for image 

processing tasks, CNNs have been adapted for a variety of tasks, including time series data 

analysis, due to their ability to capture localized patterns in multidimensional data. In the 

context of cloud computing load prediction, the CPU utilization data of cloud servers can be 

viewed as a sequence of multidimensional signals that vary over time and across different 

machines. The CNN layers in the proposed model serve to extract spatial features by applying 

convolution operations on the input data. This allows the model to capture local correlations 

between the different features, such as CPU usage, memory load, and disk I/O, which are crucial 

in understanding the immediate state of the system. 

Bidirectional Long Short-Term Memory (BiLSTM) for Temporal Dependencies 

BiLSTM is a variant of the Long Short-Term Memory (LSTM) network, which is an advanced type 

of Recurrent Neural Network (RNN) capable of learning long-term dependencies in sequential 

data. Traditional RNNs suffer from issues like vanishing gradients when dealing with long-term 

dependencies. LSTM networks solve this by incorporating memory cells and gating mechanisms 

(input, forget, and output gates), which control the flow of information. In a BiLSTM network, 

two LSTM layers are trained simultaneously: one processes the input sequence in the forward 

direction, while the other processes it in the reverse direction. This allows the model to capture 

both past and future dependencies in the data, making it particularly suitable for tasks where 

both the preceding and succeeding context matter, such as cloud workload prediction.For cloud 

load prediction, the BiLSTM layers enable the model to capture temporal dependencies across 

the time series data, such as the recurring patterns of CPU utilization during peak hours and off-
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peak periods. This ability to consider both forward and backward time dependencies allows for 

more accurate predictions in a fluctuating workload environment. 

 

Figure 2. Overall methodology in a flowchart 

CNN-BiLSTM Hybrid Model for Cloud Load Prediction 

The CNN-BiLSTM model combines the spatial feature extraction capability of CNNs with the 

temporal sequence learning ability of BiLSTMs, making it well-suited for the complex task of 

cloud computing load prediction. The workflow is given in Figure. The hybrid model first applies 

the CNN layers to extract spatial features from the cloud workload data. These features are then 

fed into the BiLSTM layers, which capture the temporal dependencies across the time series. By 

combining these two approaches, the model is capable of accurately predicting future 

workloads based on historical patterns. The workflow of the CNN-BiLSTM model can be 

summarized as follows: 
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1. Input Data: Multidimensional cloud workload data (e.g., CPU utilization, memory usage, disk 

I/O) is fed into the model. 

2. CNN Layers: The input data is passed through convolutional layers to extract localized spatial 

features, which capture the relationships between the different workload metrics. 

3. BiLSTM Layers: The spatial features are then passed through the BiLSTM layers, which 

capture temporal dependencies in the data, allowing the model to account for both past 

and future load patterns. 

4. Fully Connected Layers: The output from the BiLSTM layers is fed into fully connected layers, 

which combine the learned features to make final predictions about future workloads. 

5. Output: The model generates predictions of future CPU utilization and other cloud workload 

metrics, which are used for resource allocation and carbon emission estimation. 

Setup 

Dataset 

For this study, we employed the Google Cluster Dataset, which is widely used for modeling 

resource usage in cloud environments. This dataset comprises traces of resource usage, 

including CPU utilization, memory consumption, and disk I/O activities across a large-scale 

cluster of machines. Specifically, the dataset records information from approximately 12,000 

machines over several weeks, executing around 670,000 applications. The dataset provides 

detailed task execution information and resource utilization, making it suitable for building and 

evaluating load prediction models. 

Before feeding the data into the CNN-BiLSTM model, preprocessing steps were conducted. 

Normalization was applied to ensure that features such as CPU utilization and memory usage 

were scaled to a range between 0 and 1. This is essential for neural network-based models, as 

it improves convergence during training. Additionally, missing values in the dataset were 

handled using interpolation techniques to maintain continuity in the time series data. The time-

series data was then reshaped into the format required for CNN-BiLSTM modeling, where each 

input sequence represents a sample of [time steps, features]. The dataset was split into three 

subsets: 80% for training, 10% for validation, and 10% for testing. This split ensures that the 

model can be properly trained, fine-tuned, and evaluated on unseen data to validate its 

generalization capability. 

Model Parameters and Hyperparameters 

The CNN-BiLSTM model used in this study combines the advantages of convolutional neural 

networks for spatial feature extraction and bidirectional LSTMs for temporal dependency 

modeling. The architecture consists of several convolutional layers followed by a BiLSTM layer, 

as outlined in Table 1. 
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Table 1. Convolutional layers and their configurations 

Layer Type Parameter Value 

CNN Number of filters 64  
Kernel size 3x3  
Activation function ReLU  
Pooling layer MaxPooling (2x2) 

BiLSTM Number of units (forward and backward) 64  
Dropout rate 0.2 

Fully Connected Number of units 128  
Activation function ReLU 

The convolutional layers in the model extract spatial features by sliding filters over the input 

data, capturing local patterns such as spikes or drops in CPU utilization over time. After each 

convolutional layer, a MaxPooling operation is applied to reduce the dimensionality and focus 

on the most prominent features. The output from the CNN layers is then flattened and passed 

into a BiLSTM layer, which processes the data in both forward and backward directions, 

capturing long-term dependencies across the time series. 

In terms of hyperparameters, we used a learning rate of 0.001 with the Adam optimizer for 

backpropagation, ensuring efficient convergence. The model was trained with a batch size of 64 

for 50 epochs, which was found to strike a balance between training time and model 

performance. The loss function used was Mean Squared Error (MSE), as this is well-suited for 

regression tasks like cloud load prediction. Dropout regularization was applied to the BiLSTM 

layers to prevent overfitting, with a dropout rate of 0.2. 

Table 2 summarizes the key hyperparameters used during training. 

Table 2. Summary of  key hyperparameters used during training. 

Hyperparameter Value 

Learning rate 0.001 

Batch size 64 

Epochs 50 

Optimizer Adam 

Loss function MSE 

Dropout rate 0.2 

The model was trained on a GPU-accelerated machine to optimize computational time. Each 

epoch of training took approximately 10 minutes, and the model achieved convergence after 50 

epochs. 

Comparison Models 

To evaluate the effectiveness of the CNN-BiLSTM model, we compared its performance against 

several baseline models, including a simple Backpropagation (BP) neural network, a Long Short-

Term Memory (LSTM) network, a Bidirectional LSTM (BiLSTM) network, and a CNN-LSTM hybrid 

model. These models were selected based on their relevance in time-series forecasting and their 

ability to model either spatial or temporal dependencies, as outlined in Table 3. 

Table 3. AI & ML models studied for comparison 

Model Description 

BP Model A simple multi-layer perceptron, serving as a basic benchmark for comparison. 



 

 
International Journal of Intelligent Automation and Computing 

87 | P a g e  
 

LSTM A unidirectional LSTM network used to capture temporal patterns in the data. 

BiLSTM A bidirectional LSTM network, capturing both forward and backward dependencies. 

CNN-

LSTM 

A hybrid model with CNN layers for spatial feature extraction and LSTM for temporal 

dependencies. 

Each model was trained using the same dataset and hyperparameters to ensure a fair 

comparison. We evaluated these models using standard metrics, including Mean Squared Error 

(MSE), Mean Absolute Error (MAE), and R-squared (R²). These metrics provide insights into both 

the overall error and the quality of fit between the predicted and actual values. 

 

Figure 3. Actual vs Predicted Cloud Load (Linear Regression) 

Findings 

The findings in this section provide a detailed comparison of the prediction performance of 

various models, specifically focusing on their ability to accurately predict cloud load. The results 

are presented through three figures, which illustrate the differences in prediction accuracy, 

error distributions, and the general reliability of the models. 

Actual vs Predicted Cloud Load  

Figure 3 compares the actual cloud load and the predicted cloud load using the Linear Regression 

(LR) model over 200 time steps. The predicted values (blue line) consistently fall short of the 

actual values (red line), particularly during periods of high load. The discrepancies between the 

actual and predicted values are most noticeable during spikes in cloud load, where the LR model 

significantly underpredicts the peak values. 

While the LR model can track the overall trend of the cloud load, it fails to react to sudden and 

drastic changes in load, such as the peaks and dips seen throughout the graph. This is due to the 
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inherent limitations of linear models in capturing nonlinear dynamics, which are often present 

in cloud load data. The inability of the LR model to adapt to these changes demonstrates that it 

is not well-suited for environments with fluctuating and complex workloads. This 

underperformance highlights the need for more sophisticated models that can capture the 

intricacies of cloud load patterns. 

 

Figure 4. Error Distribution of Linear Regression Model 

Error Distribution of Linear Regression Model (Figure 4) 

Figure 4 illustrates the distribution of prediction errors for the Linear Regression (LR) model. The 

histogram shows that most prediction errors are positive, meaning the model consistently 

underpredicts the cloud load. Errors primarily range from 5 to 35 units, indicating that the model 

fails to accurately capture the magnitude of cloud load, especially during peak periods. The 

Kernel Density Estimate (KDE) line overlaid on the histogram further emphasizes the model’s 

bias, with the peak of the error distribution skewed to the right. This indicates a systematic 

underestimation of the cloud load. The broad spread of the error distribution, coupled with the 

model’s consistent bias, demonstrates that the Linear Regression model is ill-equipped to handle 

the complexities and variability of cloud load data. The wide distribution of errors suggests that 

the model does not generalize well to sudden fluctuations in load, leading to significant 

performance degradation when cloud load deviates from expected values. 
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Figure 5. Error Distribution Comparison Across Models 

Figure 5 provides a comparison of the error distributions for five models: BP Model, LSTM 

Model, BiLSTM Model, CNN-LSTM Model, and CNN-BiLSTM Model. Each line in the graph 

represents the Kernel Density Estimate (KDE) of the errors for each model, allowing for a direct 

comparison of prediction accuracy. The CNN-BiLSTM model (purple line) exhibits the narrowest 

error distribution, indicating the highest level of accuracy and reliability among the models. The 

tight clustering of errors around zero suggests that this model generates predictions that closely 

align with the actual cloud load, with minimal large deviations. This superior performance can 

be attributed to the model’s ability to capture both spatial features (via CNN layers) and 

bidirectional temporal dependencies (via BiLSTM layers), making it especially well-suited for 

time-series forecasting tasks like cloud load prediction. In contrast, the BP model (light blue line) 

has the widest error distribution, indicating that its predictions are far less reliable, with 

frequent large errors. This model’s inability to capture the temporal dynamics of the data results 

in a high level of variability in its predictions. 

The LSTM and BiLSTM models, while better than the BP model, still show relatively wider error 

distributions compared to CNN-based models. These models capture temporal dependencies 

but lack the spatial feature extraction capabilities provided by CNN layers, which may explain 

their lower performance. The CNN-LSTM model (light pink line) performs similarly to CNN-

BiLSTM but shows a slightly wider error distribution. This suggests that while the CNN-LSTM 

model effectively captures both spatial and temporal dependencies, the bidirectional nature of 

the BiLSTM provides an additional advantage, leading to more accurate predictions overall. 

Conclusion 

This paper presents an enhanced CNN-BiLSTM hybrid model for cloud computing load 

prediction, demonstrating significant improvements in prediction accuracy and reliability over 

traditional methods and simpler neural network models. By combining the strengths of 
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Convolutional Neural Networks (CNNs) for spatial feature extraction and Bidirectional Long 

Short-Term Memory (BiLSTM) networks for capturing temporal dependencies, the proposed 

model was able to outperform baseline models like Linear Regression (LR), Backpropagation 

(BP), LSTM, and CNN-LSTM. 

The findings clearly show that the CNN-BiLSTM model achieves a narrower error distribution, 

indicating fewer large prediction errors and a more accurate fit to the actual cloud load. In 

contrast, simpler models such as Linear Regression consistently underpredicted cloud load, 

especially during high-load periods, revealing their inability to handle the complex and dynamic 

nature of cloud environments. The primary contributions of this research lie in the development 

of a novel hybrid architecture and the demonstration of its effectiveness in real-world cloud 

environments. The experimental results underscore the need for models that can effectively 

capture both spatial and temporal patterns in cloud load data, particularly in large-scale, highly 

variable environments. 

Future Directions 

For future work, further enhancements could be made by incorporating Transformer-based 

attention mechanisms to further improve the model's ability to focus on critical features in the 

data. Additionally, exploring the use of federated learning to distribute the load prediction 

model across multiple cloud environments could enhance scalability and privacy. Lastly, 

applying these techniques to more granular microservices-based architectures could optimize 

load predictions in cloud-native environments, driving greater resource efficiency in cloud 

computing. 
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