

International Journal of Intelligent Automation and Computing

63 | P a g e

Protecting Containerized Environments from

Emerging Threats
Faisal Ramadhan

Department of Computer Science, Universitas Brawijaya

Sri Hartati

Department of Computer Science, Universitas Hasanuddin

Abstract

Containerized environments have revolutionized software development and deployment by enabling

consistent, scalable, and efficient application management across diverse platforms. However, the rapid

adoption of container technologies has exposed them to a growing array of sophisticated security threats.

This paper delves into the emerging threats targeting containerized environments and presents a

comprehensive framework for safeguarding these environments. By exploring the attack surface,

common vulnerabilities, and advanced protection mechanisms, we provide actionable insights to secure

container deployments, ensuring they remain robust against current and future threats.

Keywords: Container security, containerized environments, Docker, Kubernetes,

microservices, runtime protection, security best practices, DevSecOps, threat detection,

container orchestration, cloud security, vulnerability management, access control, incident

response.

Declarations

 Competing interests:

The author declares no competing interests.

© The Author(s). Open Access 2019 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,

sharing, adaptation, distribution, and reproduction in any medium or format, as long as appropriate credit is given to the original author(s) and source, a

link to the Creative Comsmons license is provided, and changes are indicated. Unless otherwise stated in a credit line to the source, the photos or other

third-party material in this article are covered by the Creative Commons license. If your intended use is not permitted by statutory law or exceeds the

permitted usage, you must acquire permission directly from the copyright holder if the material is not included in the article's Creative Commons lice

Introduction

In the evolving landscape of software

development, containerized

environments have emerged as a

paradigm shift, fundamentally altering

the way applications are built, deployed,

and managed. Containers, encapsulating

applications and their dependencies into

a single, portable unit, enable developers

to achieve unprecedented consistency

across different environments—from

development to production—while

ensuring that the application runs

identically, regardless of where it is

deployed. This capability has driven the

widespread adoption of container

technologies such as Docker,

Kubernetes, and other container

orchestration platforms, particularly in

the context of microservices

architectures and cloud-native

applications.

Research Article OPEN ACCESS

International Journal of Intelligent Automation and Computing

64 | P a g e

The meteoric rise of containerized

environments can be attributed to several

key factors. First and foremost,

containers offer significant

improvements in resource efficiency

compared to traditional virtual machines

(VMs). Containers share the host

operating system's kernel, enabling

multiple containers to run on the same

host with minimal overhead. This leads

to faster startup times, better resource

utilization, and the ability to run more

workloads on the same infrastructure.

Additionally, containers facilitate agile

development practices by allowing

developers to easily create, test, and

deploy applications in isolated

environments that closely mirror

production systems. [1]

However, as containerized environments

have gained traction, they have also

introduced new security challenges that

were not present in traditional

monolithic architectures. The very

features that make containers

attractive—portability, efficiency, and

scalability—also create a complex

security landscape that requires

specialized tools, techniques, and

strategies to manage effectively.

Traditional security models, which were

designed to protect monolithic

applications running on dedicated

servers, are often inadequate for securing

containerized environments, where the

attack surface is both broader and more

dynamic. [2]

The attack surface in a containerized

environment is composed of multiple

layers, each with its own set of potential

vulnerabilities. These layers include the

container images, the container runtime,

the orchestration platform, the

underlying host operating system, and

the network infrastructure that connects

containers. Each of these layers

introduces unique security concerns that

must be addressed to protect the overall

environment. For example,

vulnerabilities in container images can

lead to the deployment of compromised

containers, while misconfigurations in

the orchestration platform can expose

critical services to unauthorized access.

[3]

Furthermore, the rapid pace of

innovation in container technologies has

outpaced the development of security

best practices and standards, leaving

many organizations struggling to keep

up with the latest threats. As a result,

containerized environments are

increasingly becoming targets for

sophisticated cyber-attacks, ranging

from container escape attacks to supply

chain compromises. These emerging

threats underscore the need for a

comprehensive, multi-layered approach

to security that can adapt to the evolving

threat landscape.

This paper seeks to address the growing

security concerns in containerized

environments by providing a detailed

analysis of the attack surface, identifying

emerging threats, and outlining best

practices for protecting these

environments. We will explore the

unique challenges posed by

containerized environments, examine

real-world examples of security

International Journal of Intelligent Automation and Computing

65 | P a g e

incidents, and provide actionable

recommendations for securing

containers at every stage of the

application lifecycle. Our goal is to

equip security practitioners, developers,

and operations teams with the

knowledge and tools they need to defend

their containerized environments against

current and future threats.

The Attack Surface of Containerized

Environments

The security of containerized

environments is intrinsically tied to

understanding the extensive attack

surface that they present. Unlike

traditional monolithic applications,

where the attack vectors are relatively

well-defined and contained,

containerized environments introduce a

complex, multi-layered architecture with

numerous points of potential

vulnerability. To effectively protect

these environments, it is essential to

dissect each layer of the container stack

and identify where threats may arise.

Container Images and Base Layers

At the heart of every containerized

environment lies the container image—a

blueprint that defines the application and

all of its dependencies. The security of

the containerized environment is only as

strong as the images that constitute it.

Container images often originate from

public repositories like Docker Hub,

which, while convenient, can also be a

significant source of vulnerabilities.

Many public images contain outdated

software with known vulnerabilities, or

they may have been created with

insecure configurations. Attackers can

take advantage of these vulnerabilities to

compromise the container once it is

deployed.

One of the primary concerns with

container images is the integrity of the

base layers. Base layers serve as the

foundation for all other layers in a

container image. If the base layer is

compromised, all derived images are at

risk. For example, a vulnerability in the

base operating system layer could be

exploited to gain unauthorized access to

the container. Furthermore, attackers can

deliberately create malicious images

with backdoors or embedded malware,

which, when pulled from a public

repository and deployed, can lead to

significant security breaches.

To mitigate these risks, it is crucial to

adopt a strategy of secure image

management. Organizations should

always use trusted sources for their

container images and should verify the

integrity of images using cryptographic

checksums or digital signatures.

Additionally, it is important to scan

images for vulnerabilities before

deployment and to continuously monitor

for newly discovered issues. Tools like

Clair, Trivy, and Anchore can automate

the process of scanning images for

vulnerabilities and can be integrated into

the CI/CD pipeline to ensure that only

secure images are deployed.

Another best practice is to minimize the

size of container images by using

minimal base images and only including

the necessary dependencies. This

International Journal of Intelligent Automation and Computing

66 | P a g e

reduces the attack surface by eliminating

unnecessary components that could

introduce vulnerabilities. For example,

using a minimal base image like Alpine

Linux, which is designed to be small and

secure, can significantly reduce the risk

of vulnerabilities compared to using a

more feature-rich base image like

Ubuntu or CentOS. [4]

Container Runtime and Orchestration

The container runtime is the component

responsible for executing containers. It

acts as an intermediary between the

container and the host operating system,

managing system resources, and

ensuring that containers operate within

their allocated limits. The security of the

container runtime is critical, as it directly

affects the security of the containers

themselves. A vulnerability in the

container runtime, such as a privilege

escalation flaw, could allow an attacker

to gain unauthorized access to the host

system and potentially other containers

running on the same host. [5]

One of the most well-known container

runtimes is Docker, which has become

synonymous with containers in many

respects. However, Docker is not the

only runtime available; others include

containerd, CRI-O, and rkt. Each of

these runtimes has its own security

considerations, and it is important to

choose a runtime that aligns with the

organization's security requirements.

Additionally, container runtimes often

require root privileges to operate, which

can be a significant security risk. To

mitigate this risk, organizations should

implement the principle of least

privilege by configuring containers to

run with the least amount of privilege

necessary and by avoiding running

containers as root whenever possible.

Container orchestration platforms like

Kubernetes add another layer of

complexity to the security of

containerized environments.

Kubernetes, while providing powerful

tools for managing large-scale container

deployments, also introduces additional

International Journal of Intelligent Automation and Computing

67 | P a g e

attack vectors. For example, the

Kubernetes API server, which serves as

the control plane for the entire cluster, is

a prime target for attackers. If

compromised, the API server could be

used to control all aspects of the cluster,

including the ability to deploy malicious

containers or to exfiltrate sensitive data.

To secure the container runtime and

orchestration platform, organizations

should implement a defense-in-depth

strategy that includes multiple layers of

security controls. This includes enabling

runtime security controls that can detect

and block malicious activity within

containers in real time. Tools like Falco

and Sysdig Secure can monitor container

behavior and generate alerts when

suspicious activity is detected.

Additionally, network segmentation

should be used to isolate containers and

restrict unnecessary communication

paths. By limiting the network access of

containers, organizations can reduce the

risk of lateral movement by attackers

who have compromised a single

container. [6]

Networking and Service Mesh

Networking is a critical component of

any containerized environment, enabling

containers to communicate both

internally and externally. However, the

complexity of container networking

introduces numerous security

challenges, particularly in environments

with large numbers of containers and

microservices. Misconfigurations in

networking rules or service meshes can

expose sensitive data or allow lateral

movement within the environment.

Attackers can exploit these weaknesses

to intercept traffic, perform man-in-the-

middle attacks, or exfiltrate data.

In Kubernetes, the default networking

model assumes that all pods (the smallest

deployable units in Kubernetes) within a

cluster can communicate with each other

without restriction. While this model

simplifies networking, it also presents

significant security risks. For example,

an attacker who gains access to a single

pod could potentially exploit

vulnerabilities in other pods within the

same cluster. To mitigate this risk,

organizations should implement network

policies that define and enforce strict

rules about which pods can

communicate with each other.

Service meshes, such as Istio, Linkerd,

and Consul, provide advanced

networking capabilities for

microservices-based applications,

including traffic management, service

discovery, and load balancing. While

service meshes offer significant benefits,

they also introduce additional attack

vectors. For example, if the control plane

of a service mesh is compromised, an

attacker could manipulate traffic

between services, potentially leading to

data breaches or service disruptions.

To secure container networking,

organizations should adopt a zero-trust

model, where no communication is

allowed by default, and all traffic is

explicitly authorized. This can be

achieved by using network policies in

Kubernetes or by leveraging the security

International Journal of Intelligent Automation and Computing

68 | P a g e

features of a service mesh. Additionally,

network segmentation should be

implemented to isolate critical

workloads and to limit the impact of a

potential breach. For example, sensitive

services such as databases or

authentication servers should be placed

in separate network segments with strict

access controls. [1]

Another important aspect of securing

container networking is the use of

encryption for all traffic, both within the

cluster and between the cluster and

external services. Tools like Transport

Layer Security (TLS) should be used to

encrypt data in transit, and mutual TLS

(mTLS) should be implemented to

ensure that only authorized services can

communicate with each other.

Additionally, organizations should

monitor network traffic for signs of

malicious activity, such as unusual

traffic patterns or connections to known

malicious IP addresses. [7]

Secrets Management

Containers often require access to

sensitive information, such as API keys,

credentials, and certificates, to function

properly. However, the management of

these secrets in a containerized

environment presents significant

security challenges. Improper handling

of secrets—such as storing them in

plaintext within container images,

environment variables, or configuration

files—can lead to significant security

breaches if the secrets are exposed to

unauthorized users.

One of the most common mistakes in

container security is hardcoding secrets

directly into container images. This

practice not only makes it difficult to

rotate secrets when they are

compromised but also increases the risk

of exposure if the image is inadvertently

published to a public repository. For

example, a developer might accidentally

push an image containing sensitive

credentials to a public Docker Hub

repository, where it could be

downloaded by anyone with access to

the repository.

To mitigate the risks associated with

secrets management, organizations

should use dedicated secrets

management tools that are designed to

securely store and distribute sensitive

information. Examples of such tools

include HashiCorp Vault, AWS Secrets

Manager, and Azure Key Vault. These

tools provide mechanisms for encrypting

secrets at rest, controlling access to

secrets based on fine-grained policies,

and securely injecting secrets into

containers at runtime.

In Kubernetes, secrets can be managed

using the built-in Secrets resource,

which allows for the secure storage and

distribution of sensitive information

within a cluster. However, it is important

to note that Kubernetes secrets are only

base64 encoded by default, which is not

sufficient for protecting sensitive

information. To enhance the security of

Kubernetes secrets, organizations should

enable encryption at rest for the etcd

database, which stores the secrets, and

use a third-party secrets management

International Journal of Intelligent Automation and Computing

69 | P a g e

solution to provide additional layers of

security.

Another best practice for secrets

management is to implement automated

processes for rotating secrets regularly.

This ensures that even if a secret is

compromised, the window of

opportunity for an attacker is limited.

Additionally, organizations should

implement access controls to ensure that

only authorized users and services can

access secrets. For example, role-based

access control (RBAC) can be used in

Kubernetes to restrict access to secrets

based on the principle of least privilege.

Supply Chain Vulnerabilities

The software supply chain,

encompassing all components used in

building and running containers, is

increasingly targeted by attackers.

Supply chain attacks can occur at any

stage of the development process, from

the sourcing of third-party libraries to the

deployment of container images in

production. Compromising a single

component within the supply chain can

have cascading effects, leading to

widespread vulnerabilities across

multiple containers and environments.

One of the most well-known examples of

a supply chain attack is the SolarWinds

incident, where attackers compromised

the build process of the Orion software,

leading to the distribution of a malicious

update to thousands of customers. In the

context of containerized environments,

supply chain attacks could involve the

compromise of a popular container

image or a dependency used by multiple

containers. For example, an attacker

could inject malicious code into a widely

used open-source library, which is then

included in a container image and

deployed across multiple environments.

To protect against supply chain attacks,

organizations should implement a

comprehensive strategy for securing

their software supply chain. This

includes securing the CI/CD pipeline by

implementing code signing, conducting

regular audits, and enforcing strict

access controls. Code signing ensures

that only authorized code is deployed,

while regular audits can help identify

potential vulnerabilities or

misconfigurations in the build process.

Additionally, organizations should

monitor their dependencies for

vulnerabilities and patches. This can be

achieved by using tools like Dependabot

or Snyk, which automatically scan

dependencies for known vulnerabilities

and notify developers when updates are

available. Organizations should also

consider using software composition

analysis (SCA) tools, which provide

visibility into the components used in

their applications and help identify

potential risks associated with third-

party libraries.

Another important aspect of securing the

software supply chain is the use of

reproducible builds. Reproducible builds

ensure that the same source code always

produces the same binary, making it

easier to detect tampering or

unauthorized changes. This can be

particularly important in environments

International Journal of Intelligent Automation and Computing

70 | P a g e

where container images are built from

source code, as it provides a level of

assurance that the image has not been

compromised. [8]

Finally, organizations should implement

monitoring and logging throughout the

software supply chain to detect potential

compromises. This includes monitoring

for unusual activity in source code

repositories, build systems, and

container registries, as well as logging

all actions taken within the CI/CD

pipeline. By maintaining comprehensive

logs, organizations can quickly identify

and respond to potential supply chain

attacks.

Emerging Threats in Containerized

Environments

As the adoption of containerized

environments continues to grow, so too

does the sophistication of the threats that

target them. Attackers are constantly

developing new techniques to exploit the

unique characteristics of containers, and

organizations must stay ahead of these

emerging threats to protect their

environments effectively. This section

outlines some of the most pressing

emerging threats to containerized

environments, along with examples of

how these threats have been observed in

the wild.

Container Escape Attacks

Container escape attacks represent one

of the most severe threats to container

security. In a container escape attack, an

attacker who has compromised a

container is able to break out of the

container's isolation and gain access to

the host system. Once on the host, the

attacker can escalate their privileges,

gain control over other containers, and

potentially access sensitive resources or

data.

Container escape attacks typically

exploit vulnerabilities in the container

runtime, the Linux kernel, or

misconfigurations in the container's

security policies. For example, a

vulnerability in the container runtime,

such as the well-known CVE-2019-5736

vulnerability in Docker's runc, could

allow an attacker to execute arbitrary

code on the host system with root

privileges. Similarly, a flaw in the Linux

kernel, such as a privilege escalation

vulnerability, could be exploited to

escape the container's namespace

isolation and access the host.

One of the most notable examples of a

container escape attack is the Dirty

COW vulnerability (CVE-2016-5195), a

privilege escalation vulnerability in the

Linux kernel that could be exploited to

gain write access to read-only memory,

leading to container escape. In this case,

an attacker could use the vulnerability to

overwrite critical files on the host

system, gaining root access and

compromising the entire environment.

To mitigate the risk of container escape

attacks, organizations should adopt a

multi-layered approach to security that

includes the following best practices:

1. Use Hardened Container

Runtimes: Choose container

International Journal of Intelligent Automation and Computing

71 | P a g e

runtimes that are designed with

security in mind, such as gVisor

or Kata Containers, which

provide an additional layer of

isolation between the container

and the host. These runtimes use

lightweight virtual machines

(VMs) to run containers,

significantly reducing the risk of

container escape.

2. Keep the Kernel Up to Date:

Regularly update the host

system's kernel to ensure that it is

protected against known

vulnerabilities. This includes

applying security patches as soon

as they become available and

monitoring for new kernel

vulnerabilities that could be

exploited.

3. Implement Strong Security

Policies: Use Linux Security

Modules (LSMs) such as

AppArmor, SELinux, or

seccomp to enforce strict security

policies on containers. These

policies can restrict the system

calls that containers are allowed

to make, reducing the risk of

container escape.

4. Limit Container Privileges:

Configure containers to run with

the least amount of privilege

necessary, and avoid running

containers as root. Use the no-

new-privileges flag to prevent

containers from gaining

additional privileges during

execution.

5. Isolate Sensitive Workloads: Run

sensitive or high-value

workloads in separate

environments or on dedicated

hosts to minimize the potential

impact of a container escape. For

example, critical workloads

could be run on dedicated nodes

with additional security controls

in place. [9]

Supply Chain Attacks

Supply chain attacks have emerged as a

significant threat to containerized

environments, particularly as

organizations increasingly rely on third-

party components and open-source

software. In a supply chain attack, an

attacker compromises a component

within the software development or

deployment process, leading to the

distribution of malicious code across

multiple environments.

One of the most concerning aspects of

supply chain attacks is their potential for

widespread impact. A single

compromised component can propagate

across multiple containers,

environments, and even organizations.

This was demonstrated by the

SolarWinds attack, where attackers

compromised the build process of the

Orion software, leading to the

distribution of a malicious update to

thousands of customers. [10]

In the context of containerized

environments, supply chain attacks

could involve the compromise of a

popular container image, a third-party

library, or even the CI/CD pipeline itself.

International Journal of Intelligent Automation and Computing

72 | P a g e

For example, an attacker could inject

malicious code into an open-source

library that is widely used in container

images. When the library is included in a

container image and deployed, the

malicious code could be executed,

leading to the compromise of the

container and potentially the entire

environment. [11]

To defend against supply chain attacks,

organizations should implement a

comprehensive strategy that includes the

following best practices:

1. Secure the CI/CD Pipeline:

Implement strict access controls

and monitoring throughout the

CI/CD pipeline to prevent

unauthorized changes. Use code

signing to ensure that only

authorized code is deployed, and

conduct regular audits to identify

potential vulnerabilities or

misconfigurations.

2. Monitor Dependencies:

Regularly scan all third-party

components and dependencies

for known vulnerabilities and

patches. Tools like Dependabot,

Snyk, and Whitesource can

automate this process and notify

developers when updates are

available. [12]

3. Use Reproducible Builds:

Implement reproducible builds to

ensure that the same source code

always produces the same binary.

This makes it easier to detect

tampering or unauthorized

changes in the build process.

4. Verify Image Integrity: Use

cryptographic checksums or

digital signatures to verify the

integrity of container images

before deployment. This ensures

that the images have not been

tampered with during transit or

storage.

5. Monitor for Unusual Activity:

Implement continuous

monitoring and logging

throughout the software supply

chain to detect potential

compromises. This includes

monitoring source code

repositories, build systems, and

container registries for unusual

activity or unauthorized access.

Misconfiguration Exploits

Misconfigurations are a leading cause of

security incidents in containerized

environments. Despite the widespread

adoption of best practices and security

frameworks, misconfigurations continue

to pose a significant risk, often due to the

complexity of managing large-scale

container deployments and the speed at

which new technologies are adopted.

Misconfigurations can occur at any level

of the container stack, from the container

runtime and orchestration platform to the

network and storage layers. Common

examples of misconfigurations include:

[3]

• Overly Permissive Network

Policies: In Kubernetes, the

default network policy allows all

pods within a cluster to

International Journal of Intelligent Automation and Computing

73 | P a g e

communicate with each other

without restriction. If not

properly configured, this can

expose sensitive services to

unauthorized access or enable

lateral movement by attackers.

• Insecure Default Settings: Many

containerized environments are

deployed with default settings

that prioritize ease of use over

security. For example, Docker

containers are often run with root

privileges by default, which can

lead to significant security risks

if not properly managed. [13]

• Improper Access Controls:

Misconfigured access controls

can lead to unauthorized access

to critical resources or services.

For example, an attacker could

exploit weak RBAC policies in

Kubernetes to gain

administrative privileges and

take control of the entire cluster.

• Inadequate Logging and

Monitoring: Without proper

logging and monitoring, security

incidents can go undetected for

extended periods of time,

allowing attackers to operate

within the environment with

impunity.

To mitigate the risk of misconfiguration

exploits, organizations should adopt the

following best practices:

1. Use Security Benchmarks:

Implement security benchmarks

and best practices, such as the

Center for Internet Security (CIS)

Kubernetes Benchmark, to guide

the configuration of

containerized environments.

These benchmarks provide

detailed recommendations for

securing the container runtime,

orchestration platform, and

associated infrastructure.

2. Regularly Audit

Configurations: Conduct

regular audits of containerized

environments to identify and

remediate misconfigurations.

Tools like kube-bench and

Docker Bench for Security can

automate the process of auditing

Kubernetes and Docker

environments against security

benchmarks.

3. Implement RBAC and Network

Policies: Use RBAC to enforce

the principle of least privilege

and ensure that users and services

only have access to the resources

they need. Additionally,

implement network policies to

restrict communication between

pods and limit the potential

impact of a compromise. [14]

4. Enable Logging and

Monitoring: Implement

comprehensive logging and

monitoring across all layers of

the container stack. This includes

capturing logs from the container

runtime, orchestration platform,

and network infrastructure, as

International Journal of Intelligent Automation and Computing

74 | P a g e

well as monitoring for signs of

suspicious activity.

5. Train and Educate Teams:

Ensure that development,

operations, and security teams

are trained on the unique security

challenges of containerized

environments and are familiar

with best practices for secure

configuration. Regular training

and awareness programs can help

prevent common

misconfigurations and improve

the overall security posture.

Poisoning Container Registries

Container registries are repositories

where container images are stored,

shared, and distributed. Poisoning

attacks involve injecting malicious

images into these registries, which

unsuspecting users may pull and deploy,

leading to compromised environments.

Public registries, such as Docker Hub,

are particularly vulnerable to this type of

attack, as they are open to contributions

from a wide range of users and

organizations. [11]

In a poisoning attack, an attacker may

create a malicious image that appears to

be a legitimate and popular image, such

as a base operating system or a common

software package. The attacker then

uploads the image to a public registry,

where it may be downloaded by users

who assume it is safe to use. Once

deployed, the malicious image can

execute harmful actions, such as

installing backdoors, exfiltrating data, or

launching denial-of-service attacks.

One of the most notable examples of a

container registry poisoning attack

occurred in 2018 when researchers

discovered that several popular Docker

Hub images contained cryptocurrency

mining malware. The images had been

downloaded millions of times, leading to

significant financial losses for affected

organizations.

To defend against container registry

poisoning, organizations should implement

the following best practices:

1. Use Private Registries:

Whenever possible, use private

container registries that are

accessible only to authorized

users and are not exposed to the

public internet. Private registries

can be hosted on-premises or in

the cloud and provide greater

control over the images that are

stored and distributed. [9]

2. Verify Image Authenticity:

Always verify the authenticity of

images before pulling them from

a registry. This can be done by

checking the digital signature or

checksum of the image and

comparing it to a known good

value. Additionally,

organizations should use tools

like Notary and Docker Content

Trust to enforce image signing

and verification. [15]

3. Scan Images for

Vulnerabilities: Implement

automated vulnerability scanning

for all images pulled from a

registry, regardless of their

International Journal of Intelligent Automation and Computing

75 | P a g e

source. This ensures that any

malicious or vulnerable images

are identified and remediated

before they are deployed. Tools

like Clair, Anchore, and Trivy

can be integrated into the CI/CD

pipeline to automate this process.

4. Implement Registry Access

Controls: Enforce strict access

controls on container registries to

ensure that only authorized users

can push or pull images. This

includes using role-based access

control (RBAC) to limit access

based on the user's role and

implementing multi-factor

authentication (MFA) for

additional security. [16]

5. Monitor Registry Activity:

Implement monitoring and

logging for all activity within the

container registry, including

image uploads, downloads, and

access attempts. This provides

visibility into potential malicious

activity and allows for quick

response in the event of a

poisoning attack. [17]

Advanced Persistent Threats (APTs) in

Containers

Advanced Persistent Threats (APTs) are

long-term, targeted attacks that infiltrate

and persist within a network, often going

undetected for extended periods. APTs

are typically carried out by well-funded

and highly skilled threat actors, such as

nation-states or organized cybercriminal

groups. In the context of containerized

environments, APTs can exploit

weaknesses in orchestration platforms,

container runtimes, or the underlying

infrastructure to establish a foothold,

gradually escalating their privileges and

accessing critical data.

APTs are particularly dangerous in

containerized environments because

they can leverage the dynamic and

distributed nature of containers to move

laterally within the environment,

evading detection and targeting high-

value assets. For example, an APT might

compromise a less critical container and

use it as a pivot point to gain access to

more sensitive containers or services.

The use of ephemeral containers, which

are created and destroyed frequently, can

make it difficult to detect and track the

activities of an APT over time. [3]

To defend against APTs in containerized

environments, organizations should

implement a comprehensive security

strategy that includes the following best

practices:

1. Adopt a Zero-Trust

Architecture: Implement a zero-

trust security model where no

entity is trusted by default,

regardless of whether it is inside

or outside the network. This

includes enforcing strict access

controls, using multi-factor

authentication, and continuously

monitoring all activity within the

environment.

2. Implement Threat Detection and

Response: Use advanced threat

detection tools, such as intrusion

detection systems (IDS),

International Journal of Intelligent Automation and Computing

76 | P a g e

endpoint detection and response

(EDR), and network traffic

analysis (NTA), to monitor for

signs of APT activity. These

tools can identify patterns of

behavior that are indicative of an

APT, such as lateral movement,

privilege escalation, or data

exfiltration. [3]

3. Use Microsegmentation:

Implement microsegmentation to

isolate containers and limit the

potential for lateral movement by

an APT. Microsegmentation

involves creating fine-grained

security zones within the

environment, each with its own

set of security controls and

access policies. This reduces the

attack surface and makes it more

difficult for an APT to move

between containers or services.

[18]

4. Harden the Orchestration

Platform: Secure the container

orchestration platform, such as

Kubernetes, by implementing

best practices for hardening the

control plane, securing the API

server, and enforcing RBAC

policies. This reduces the

likelihood that an APT can

compromise the orchestration

platform and gain control over

the entire environment.

5. Regularly Rotate Credentials

and Secrets: Implement

automated processes for rotating

credentials and secrets on a

regular basis. This reduces the

window of opportunity for an

APT to use stolen credentials or

secrets to escalate their privileges

and move laterally within the

environment.

6. Conduct Regular Red Team

Exercises: Engage in regular red

team exercises to simulate APT

attacks and test the organization's

defenses. These exercises can

help identify weaknesses in the

security posture and provide

valuable insights into how an

APT might operate within the

environment. [2]

Best Practices for Securing

Containerized Environments

Protecting containerized environments

requires a multi-layered approach that

addresses the various attack vectors and

emerging threats discussed above.

Organizations must implement a

combination of preventive, detective,

and responsive security measures to

safeguard their containerized

environments effectively. This section

outlines key best practices for enhancing

container security at every stage of the

application lifecycle.

Secure Image Management

Container images are the building blocks

of containerized environments, and their

security is paramount to the overall

security of the environment. To ensure

that container images are secure,

organizations should implement a

comprehensive image management

International Journal of Intelligent Automation and Computing

77 | P a g e

strategy that includes the following best

practices:

1. Use Trusted Sources: Always

source container images from

reputable repositories and

verified publishers. Trusted

repositories, such as Docker

Certified Images or Red Hat

Container Catalog, provide a

level of assurance that the images

have been vetted for security and

quality. Additionally,

organizations should create and

maintain their own private

container registries, where they

can store and distribute custom

images that have been built and

validated internally.

2. Scan Images Regularly: Employ

automated tools to scan images

for vulnerabilities before

deployment and continuously

monitor for newly discovered

issues. Vulnerability scanning

tools, such as Clair, Trivy, and

Anchore, can be integrated into

the CI/CD pipeline to ensure that

images are scanned as part of the

build process. Regular scanning

helps identify and remediate

vulnerabilities before they can be

exploited by attackers. [19]

3. Minimize Image Size: Reduce

the attack surface by using

minimal base images and only

including necessary

dependencies. Minimal base

images, such as Alpine Linux or

Distroless, contain only the

essential components needed to

run the application, reducing the

number of potential

vulnerabilities. Additionally,

organizations should follow the

principle of least privilege by

removing unnecessary tools,

utilities, and libraries from

container images.

4. Implement Image Signing and

Verification: Use cryptographic

signing to ensure the integrity

and authenticity of container

images. Docker Content Trust

and Notary provide mechanisms

for signing images and verifying

their signatures before

deployment. Image signing helps

prevent the deployment of

tampered or malicious images

and provides a chain of trust from

the image's creation to its

deployment. [20]

5. Maintain a Vulnerability

Management Program:

Establish a vulnerability

management program that

includes regular updates and

patching of container images.

This includes tracking

vulnerabilities in third-party

dependencies and applying

patches or updates as they

become available. Organizations

should also consider adopting a

continuous delivery model,

where container images are

regularly rebuilt and redeployed

with the latest security updates.

International Journal of Intelligent Automation and Computing

78 | P a g e

6. Use Reproducible Builds:

Implement reproducible builds to

ensure that the same source code

always produces the same binary.

This provides a level of

assurance that the container

image has not been tampered

with and that it contains the

expected software components.

Reproducible builds also make it

easier to audit and verify the

contents of container images.

[21]

Harden Container Runtime and

Orchestration

The container runtime and orchestration

platform play a critical role in the

security of containerized environments.

To harden these components,

organizations should implement the

following best practices: [22]

1. Implement the Principle of Least

Privilege: Configure containers

to run with the least amount of

privilege necessary and avoid

running containers as root. This

reduces the potential impact of a

compromise by limiting the

attacker's ability to escalate

privileges or access sensitive

resources. In Kubernetes, this can

be achieved by setting security

contexts for pods and containers,

such as runAsUser and

runAsNonRoot, to enforce non-

root execution. [9]

2. Enable Runtime Security

Controls: Utilize runtime

security tools that can detect and

block malicious activity within

containers in real-time. Tools

like Falco and Sysdig Secure

monitor container behavior and

generate alerts when suspicious

activity is detected. These tools

can enforce security policies,

such as preventing the execution

of unauthorized binaries or

blocking system calls that are

commonly used in attacks.

3. Harden the Orchestration

Platform: Secure the container

orchestration platform, such as

Kubernetes, by following best

practices for hardening the

control plane, securing the API

server, and enforcing RBAC

policies. This includes

implementing network

segmentation, using TLS for all

communications, and limiting

access to the Kubernetes API

server to authorized users and

services.

4. Use Pod Security Policies:

Implement pod security policies

(PSPs) to enforce security

standards for pods within a

Kubernetes cluster. PSPs allow

organizations to define and

enforce rules for how pods

should be configured, such as

restricting the use of privileged

containers, enforcing read-only

root file systems, and disallowing

the use of host networking or host

IPC. By enforcing these policies,

organizations can reduce the risk

International Journal of Intelligent Automation and Computing

79 | P a g e

of misconfigurations that could

lead to security breaches. [23]

5. Regularly Update and Patch

the Container Runtime: Keep

the container runtime up to date

with the latest security patches

and updates. This includes

regularly updating Docker,

containerd, or any other runtime

used in the environment.

Vulnerabilities in the container

runtime can have severe

consequences, and timely

patching is essential to

maintaining a secure

environment.

6. Implement Network

Segmentation: Use network

segmentation to isolate

containers and restrict

unnecessary communication

paths. This can be achieved using

network policies in Kubernetes,

which allow organizations to

define rules about which pods

can communicate with each

other. Network segmentation

reduces the risk of lateral

movement by attackers and limits

the potential impact of a breach.

[13]

Enhance Secrets Management

Effective secrets management is crucial

for securing sensitive information in

containerized environments. To enhance

secrets management, organizations

should adopt the following best

practices:

1. Use Dedicated Secrets

Management Tools: Store secrets

in secure vaults and inject them

into containers at runtime, rather

than hardcoding them into

images. Tools like HashiCorp

Vault, AWS Secrets Manager,

and Azure Key Vault provide

secure storage and access

controls for secrets, ensuring that

they are protected both at rest and

in transit. [2]

2. Rotate Secrets Regularly:

Implement automated processes

to rotate secrets periodically and

upon any suspected compromise.

Regular rotation reduces the risk

of secrets being compromised

and limits the window of

opportunity for attackers.

Organizations should also

implement policies for revoking

and regenerating secrets in the

event of a security incident.

3. Encrypt Secrets at Rest and in

Transit: Ensure that all secrets

are encrypted at rest and in transit

to protect them from

unauthorized access. In

Kubernetes, this can be achieved

by enabling encryption at rest for

the etcd database, which stores

secrets, and using TLS for all

communications involving

secrets. [4]

4. Limit Access to Secrets:

Implement fine-grained access

controls to ensure that only

authorized users and services can

International Journal of Intelligent Automation and Computing

80 | P a g e

access secrets. In Kubernetes,

this can be done using RBAC to

control access to secrets based on

the user's role and the principle of

least privilege. Additionally,

organizations should audit access

to secrets regularly to ensure that

access controls are being

enforced. [24]

5. Use Environment Variables

with Caution: Avoid storing

sensitive information in

environment variables, as they

can be exposed to other processes

running on the same host. If

environment variables must be

used, ensure that they are

managed securely and that access

to them is restricted.

6. Monitor and Audit Secrets

Usage: Implement monitoring

and auditing of secrets usage to

detect unauthorized access or

anomalies. This includes logging

all access to secrets and using

monitoring tools to detect

potential leaks or misuse of

secrets. Regular audits can help

identify weaknesses in the secrets

management process and provide

insights for improvement.

Supply Chain Security

Securing the software supply chain is

critical to protecting containerized

environments from attacks. To enhance

supply chain security, organizations

should implement the following best

practices: [10]

1. Secure CI/CD Pipelines: Ensure

that the entire CI/CD process is

secure by implementing code

signing, conducting regular

audits, and enforcing strict access

controls. This includes securing

source code repositories, build

systems, and deployment

pipelines. Tools like Jenkins,

GitLab CI, and CircleCI should

be configured with security in

mind, and access to critical

CI/CD components should be

restricted to authorized

personnel.

2. Monitor Dependencies and

Third-Party Components:

Regularly update and monitor

third-party components for

vulnerabilities and patches. This

can be achieved using tools like

Dependabot, Snyk, and

Whitesource, which

automatically scan dependencies

for known vulnerabilities and

notify developers when updates

are available. Organizations

should also maintain an

inventory of all third-party

components used in their

applications and regularly review

them for security risks. [4]

3. Implement Reproducible

Builds: Use reproducible builds

to ensure that the same source

code always produces the same

binary. This provides a level of

assurance that the build process

has not been compromised and

that the resulting container image

International Journal of Intelligent Automation and Computing

81 | P a g e

is free from tampering.

Reproducible builds also make it

easier to audit and verify the

contents of container images.

4. Verify Image Integrity: Use

cryptographic checksums or

digital signatures to verify the

integrity of container images

before deployment. This ensures

that the images have not been

tampered with during transit or

storage. Tools like Docker

Content Trust and Notary

provide mechanisms for image

signing and verification, which

should be integrated into the

CI/CD pipeline.

5. Conduct Supply Chain Risk

Assessments: Regularly assess

the security of the software

supply chain to identify potential

risks and vulnerabilities. This

includes evaluating the security

practices of third-party vendors,

partners, and open-source

projects that are part of the

supply chain. Organizations

should also consider

implementing a software bill of

materials (SBOM) to track the

components used in their

applications and to identify

potential security risks.

6. Monitor and Respond to Supply

Chain Attacks: Implement

monitoring and logging

throughout the software supply

chain to detect potential

compromises. This includes

monitoring source code

repositories, build systems, and

container registries for unusual

activity or unauthorized access.

Organizations should also

develop and rehearse incident

response plans specifically for

supply chain attacks to ensure

quick and effective action in the

event of a breach. [25]

Incident Response and Monitoring

Effective incident response and

monitoring are essential for detecting

and responding to security incidents in

containerized environments. To enhance

incident response and monitoring

capabilities, organizations should

implement the following best practices:

[1]

1. Implement Continuous

Monitoring: Deploy monitoring

tools that provide visibility into

container activities, enabling the

detection of anomalies and

potential threats. Tools like

Prometheus, Grafana, and ELK

Stack (Elasticsearch, Logstash,

Kibana) can be used to monitor

container metrics, logs, and

events in real-time. Additionally,

security monitoring tools like

Falco, Sysdig Secure, and Aqua

Security can be used to detect and

respond to security incidents in

real-time.

2. Centralize Logging and Alerting:

Centralize logs from all

components of the containerized

environment, including the

International Journal of Intelligent Automation and Computing

82 | P a g e

container runtime, orchestration

platform, and network

infrastructure. This provides a

unified view of the environment

and makes it easier to detect

patterns of malicious activity.

Organizations should also

implement alerting mechanisms

that notify security teams of

potential incidents based on

predefined thresholds or anomaly

detection. [4]

3. Prepare for Incident Response:

Develop and rehearse incident

response plans tailored to

containerized environments,

ensuring quick and effective

action in the event of a breach.

Incident response plans should

include procedures for isolating

compromised containers,

collecting forensic evidence, and

restoring services. Organizations

should also conduct regular

tabletop exercises and

simulations to test their incident

response capabilities.

4. Use Automated Response and

Remediation: Implement

automated response and

remediation tools to quickly

contain and mitigate security

incidents. For example, tools like

Falco can be configured to

automatically block or terminate

suspicious containers based on

predefined security policies.

Automated response reduces the

time it takes to respond to an

incident and minimizes the

potential impact on the

environment. [26]

5. Conduct Post-Incident Analysis

and Review: After a security

incident, conduct a thorough

post-incident analysis to identify

the root cause and to determine

what improvements can be made

to prevent future incidents. This

includes reviewing logs,

analyzing attack vectors, and

assessing the effectiveness of the

incident response process. The

findings from the post-incident

review should be used to update

security policies, improve

monitoring and detection

capabilities, and enhance

incident response plans. [9]

6. Implement Threat Intelligence

and Sharing: Leverage threat

intelligence feeds and participate

in information-sharing

communities to stay informed

about emerging threats and

vulnerabilities. Organizations

should integrate threat

intelligence into their monitoring

and incident response processes

to improve their ability to detect

and respond to new and evolving

threats. [3]

Future Directions in Container

Security

The landscape of container security is

rapidly evolving as new threats emerge

and technologies advance. Future efforts

in securing containerized environments

will likely focus on the integration of

International Journal of Intelligent Automation and Computing

83 | P a g e

artificial intelligence (AI) and machine

learning (ML) to enhance threat

detection, the development of more

sophisticated runtime protection

mechanisms, and the adoption of zero-

trust architectures within container

ecosystems.

Artificial Intelligence and Machine

Learning for Threat Detection

AI and ML are increasingly being used

to enhance threat detection and response

in containerized environments. By

analyzing vast amounts of data from

container logs, network traffic, and

system events, AI and ML algorithms

can identify patterns of malicious

activity that may go unnoticed by

traditional security tools. These

technologies have the potential to

revolutionize container security by

providing real-time, adaptive threat

detection that can respond to new and

evolving threats. [27]

One of the key benefits of AI and ML in

container security is their ability to

detect anomalies in container behavior.

For example, an ML model could be

trained to recognize normal patterns of

CPU and memory usage for a given

container and to generate alerts when

usage deviates significantly from the

norm. Similarly, AI-driven threat

intelligence platforms can analyze data

from multiple sources to identify

emerging threats and provide actionable

insights to security teams.

However, the adoption of AI and ML in

container security is not without

challenges. One of the primary concerns

is the potential for false positives, where

benign activity is mistakenly identified

as malicious. This can lead to alert

fatigue and reduce the effectiveness of

the security team. To address this issue,

organizations should invest in training

and tuning their AI and ML models to

ensure that they are accurately detecting

true threats while minimizing false

positives. [27]

Another challenge is the need for large

amounts of data to train AI and ML

models. Organizations must ensure that

they have access to high-quality,

representative data that reflects the

diversity of their containerized

environments. Additionally, AI and ML

models must be regularly updated to

account for changes in the environment,

such as new containers, services, or

workloads.

Advanced Runtime Protection

Mechanisms

As containerized environments become

more complex and dynamic, there is a

growing need for advanced runtime

protection mechanisms that can secure

containers at the granular level. Runtime

protection involves monitoring and

controlling the execution of containers to

prevent unauthorized actions, such as

executing malicious code or accessing

sensitive data.

One of the emerging trends in runtime

protection is the use of eBPF (extended

Berkeley Packet Filter) technology.

eBPF allows for the creation of highly

efficient, programmable security

policies that can be enforced at the kernel

International Journal of Intelligent Automation and Computing

84 | P a g e

level. This provides a powerful tool for

securing containerized environments, as

eBPF programs can monitor system

calls, network traffic, and other low-

level activities in real-time, without the

performance overhead of traditional

security tools. [28]

Another promising approach to runtime

protection is the use of microVMs

(micro virtual machines) for container

isolation. MicroVMs, such as

Firecracker and Kata Containers,

provide an additional layer of isolation

between containers and the host system

by running containers in lightweight

virtual machines. This reduces the risk of

container escape and provides stronger

security guarantees compared to

traditional container runtimes.

In addition to these technologies, there is

a growing interest in the use of container

sandboxes for runtime protection.

Container sandboxes, such as gVisor,

provide a security boundary around

containers by intercepting and emulating

system calls at the user level. This

prevents containers from directly

interacting with the host kernel and

reduces the risk of exploitation. [13]

Adoption of Zero-Trust Architectures

The concept of zero-trust security has

gained significant traction in recent

years, and it is increasingly being

applied to containerized environments.

A zero-trust architecture assumes that no

entity, whether inside or outside the

network, can be trusted by default.

Instead, all access must be continuously

verified based on a combination of

identity, context, and behavior.

In the context of containerized

environments, a zero-trust architecture

involves enforcing strict access controls,

monitoring all interactions between

containers, and continuously validating

the security posture of the environment.

This includes using tools like service

meshes to enforce mutual TLS (mTLS)

for all communications, implementing

fine-grained access controls with RBAC,

and using network policies to restrict

lateral movement. [13]

One of the key benefits of a zero-trust

architecture is that it reduces the risk of

lateral movement by attackers who have

compromised a single container. By

enforcing strict segmentation and

continuously monitoring all activity,

organizations can limit the potential

impact of a breach and quickly detect

and respond to suspicious activity. [13]

However, implementing a zero-trust

architecture in a containerized

environment requires careful planning

and coordination across development,

operations, and security teams.

Organizations must ensure that their

security policies are consistent across all

layers of the container stack, from the

container runtime and orchestration

platform to the network and storage

infrastructure. Additionally, they must

invest in tools and technologies that

support zero-trust principles, such as

identity and access management (IAM)

solutions, encryption tools, and

monitoring and logging platforms. [29]

International Journal of Intelligent Automation and Computing

85 | P a g e

Security for Serverless and Ephemeral

Containers

As the concept of serverless computing

gains traction, security practices will

need to adapt to address the unique

challenges posed by ephemeral, highly

dynamic environments. Serverless

architectures, such as AWS Lambda and

Google Cloud Functions, involve

running code in response to events

without the need to manage underlying

infrastructure. This shift towards

serverless and ephemeral containers

presents new security challenges,

particularly in terms of visibility,

monitoring, and access control.

One of the primary challenges of

securing serverless environments is the

lack of control over the underlying

infrastructure. In a traditional

containerized environment,

organizations have full control over the

container runtime, orchestration

platform, and network infrastructure. In

a serverless environment, however, these

components are managed by the cloud

provider, making it more difficult to

implement custom security policies or to

monitor container activity.

To address these challenges,

organizations should adopt a

combination of preventive and detective

security measures that are specifically

designed for serverless environments.

This includes using tools like AWS

Lambda Layers to enforce security best

practices, such as dependency

management and environment

configuration. Additionally,

organizations should implement

monitoring and logging solutions that

provide visibility into serverless

functions and detect potential security

incidents in real-time.

Another important aspect of securing

serverless environments is the use of

identity and access management (IAM)

policies to control access to serverless

International Journal of Intelligent Automation and Computing

86 | P a g e

functions. Organizations should

implement the principle of least

privilege by ensuring that serverless

functions only have access to the

resources they need to perform their

tasks. Additionally, they should use

encryption to protect sensitive data both

in transit and at rest.

Collaboration and Standardization in

Container Security

As container security continues to

evolve, collaboration between industry,

academia, and open-source communities

will be crucial in driving innovation and

establishing best practices. The

development of security standards and

frameworks, such as the Open Container

Initiative (OCI) and the Cloud Native

Computing Foundation (CNCF), has

already made significant contributions to

the security of containerized

environments. [30]

Going forward, there is a need for

continued collaboration and

standardization in areas such as runtime

security, supply chain security, and

threat detection. This includes the

development of common security

benchmarks, such as the CIS Kubernetes

Benchmark, as well as the creation of

open-source tools and platforms that

support container security. Additionally,

organizations should participate in

information-sharing initiatives, such as

the Kubernetes Security Response

Committee (KSRC), to stay informed

about emerging threats and

vulnerabilities. [31]

Another important area of collaboration

is the development of security training

and education programs for

containerized environments. As

containers become increasingly

prevalent, there is a growing need for

security professionals who are well-

versed in the unique challenges of

container security. Organizations should

invest in training programs that cover

topics such as container runtime

security, orchestration platform security,

and DevSecOps practices. [16]

The Future of Container Security in a

Cloud-Native World

As organizations continue to adopt

cloud-native architectures, the future of

container security will be shaped by the

convergence of containers,

microservices, and serverless

computing. This shift towards cloud-

native environments presents both

opportunities and challenges for

security.

On the one hand, cloud-native

environments offer greater flexibility,

scalability, and resilience compared to

traditional architectures. Containers

enable organizations to quickly deploy

and scale applications, while

microservices allow for the development

of highly modular and maintainable

systems. Serverless computing further

abstracts the underlying infrastructure,

allowing organizations to focus on

delivering business value.

On the other hand, the dynamic and

distributed nature of cloud-native

environments introduces new security

International Journal of Intelligent Automation and Computing

87 | P a g e

challenges, particularly in terms of

visibility, monitoring, and access

control. Organizations must adopt a

security-first approach to cloud-native

development, ensuring that security is

integrated into every stage of the

application lifecycle. [32]

Looking ahead, the future of container

security will likely be characterized by

the continued adoption of DevSecOps

practices, where security is treated as a

shared responsibility between

development, operations, and security

teams. This includes the use of

automated security testing, continuous

monitoring, and rapid incident response

to ensure that containerized

environments remain secure in the face

of evolving threats.

Additionally, the rise of AI and ML will

play an increasingly important role in

container security, providing new tools

for threat detection, anomaly detection,

and automated response. As these

technologies mature, they will become

integral components of the container

security landscape, enabling

organizations to stay ahead of emerging

threats and to secure their cloud-native

environments.

Conclusion

Containerized environments have

undoubtedly transformed modern

computing, offering unprecedented

agility, scalability, and efficiency.

However, with these benefits come new

security challenges that require a

proactive, layered approach to defense.

By understanding the unique attack

surface of containers and implementing

robust security practices, organizations

can protect their containerized

environments from emerging threats and

ensure the continued safe operation of

their applications in a rapidly evolving

threat landscape.

This paper has provided a

comprehensive examination of the

security challenges associated with

containerized environments, addressing

the most pressing threats and outlining

best practices for safeguarding these

environments. As containers continue to

play a central role in modern computing,

staying ahead of emerging threats will be

essential to maintaining their integrity

and reliability.

The future of container security will be

shaped by ongoing innovation and

collaboration, with AI, ML, and zero-

trust architectures playing key roles in

the next generation of security solutions.

By embracing these new technologies

and adopting a security-first approach to

cloud-native development, organizations

can ensure that their containerized

environments remain secure and resilient

in the face of evolving threats. [9]

References

[1] Lingayat A.. "Integration of linux

containers in openstack: an

introspection." Indonesian Journal of

Electrical Engineering and Computer

Science 12.3 (2018): 1094-1105.

[2] Bhardwaj A.. "Virtualization in cloud

computing: moving from hypervisor to

containerization—a survey." Arabian

International Journal of Intelligent Automation and Computing

88 | P a g e

Journal for Science and Engineering

46.9 (2021): 8585-8601.

[3] Wu Y.W.. "Development exploration

of container technology through docker

containers: a systematic literature review

perspective." Ruan Jian Xue Bao/Journal

of Software 34.12 (2023): 5527-5551.

[4] Alaasam A.B.A.. "Analytic study of

containerizing stateful stream processing

as microservice to support digital twins

in fog computing." Programming and

Computer Software 46.8 (2020): 511-

525.

[5] Jani, Y. "Security best practices for

containerized applications." Journal of

Scientific and Engineering Research 8.8

(2021): 217-221.

[6] Zaman S.K.u.. "Mobility-aware

computational offloading in mobile edge

networks: a survey." Cluster Computing

24.4 (2021): 2735-2756.

[7] Minna F.. "Understanding the

security implications of kubernetes

networking." IEEE Security and Privacy

19.5 (2021): 46-56.

[8] Faustino J.. "Devops benefits: a

systematic literature review." Software -

Practice and Experience 52.9 (2022):

1905-1926.

[9] Goethals T.. "Extending kubernetes

clusters to low-resource edge devices

using virtual kubelets." IEEE

Transactions on Cloud Computing 10.4

(2022): 2623-2636.

[10] Boudi A.. "Assessing lightweight

virtualization for security-as-a-service at

the network edge." IEICE Transactions

on Communications E102B.5 (2019):

970-977.

[11] Zhan D.. "Shrinking the kernel

attack surface through static and

dynamic syscall limitation." IEEE

Transactions on Services Computing

16.2 (2023): 1431-1443.

[12] Li Z.. "Exploring new opportunities

to defeat low-rate ddos attack in

container-based cloud environment."

IEEE Transactions on Parallel and

Distributed Systems 31.3 (2020): 695-

706.

[13] Joseph C.T.. "Straddling the

crevasse: a review of microservice

software architecture foundations and

recent advancements." Software -

Practice and Experience 49.10 (2019):

1448-1484.

[14] Shih Y.Y.. "An nfv-based service

framework for iot applications in edge

computing environments." IEEE

Transactions on Network and Service

Management 16.4 (2019): 1419-1434.

[15] Pham L.M.. "Multi-level just-

enough elasticity for mqtt brokers of

internet of things applications." Cluster

Computing 25.6 (2022): 3961-3976.

[16] Bai J.. "Model-driven dependability

assessment of microservice chains in

mec-enabled iot." IEEE Transactions on

Services Computing 16.4 (2023): 2769-

2785.

[17] Farris I.. "A survey on emerging sdn

and nfv security mechanisms for iot

systems." IEEE Communications

Surveys and Tutorials 21.1 (2019): 812-

837.

[18] Theodoropoulos T.. "Security in

cloud-native services: a survey." Journal

International Journal of Intelligent Automation and Computing

89 | P a g e

of Cybersecurity and Privacy 3.4 (2023):

758-793.

[19] Jain V.. "A hybrid model for real-

time docker container threat detection

and vulnerability analysis." International

Journal of Intelligent Systems and

Applications in Engineering 11.6s

(2023): 782-793.

[20] Zhang J.. "Integration of remote

sensing algorithm program using docker

container technology." Journal of Image

and Graphics 24.10 (2019): 1813-1822.

[21] Dissanayaka A.M.. "Security

assurance of mongodb in singularity

lxcs: an elastic and convenient testbed

using linux containers to explore

vulnerabilities." Cluster Computing 23.3

(2020): 1955-1971.

[22] Khan A.. "Key characteristics of a

container orchestration platform to

enable a modern application." IEEE

Cloud Computing 4.5 (2017): 42-48.

[23] Iorio M.. "Computing without

borders: the way towards liquid

computing." IEEE Transactions on

Cloud Computing 11.3 (2023): 2820-

2838.

[24] Kaur K.. "Keids: kubernetes-based

energy and interference driven scheduler

for industrial iot in edge-cloud

ecosystem." IEEE Internet of Things

Journal 7.5 (2020): 4228-4237.

[25] Liu Y.. "Toward edge intelligence:

multiaccess edge computing for 5g and

internet of things." IEEE Internet of

Things Journal 7.8 (2020): 6722-6747.

[26] Galante G.. "Adaptive parallel

applications: from shared memory

architectures to fog computing (2002–

2022)." Cluster Computing 25.6 (2022):

4439-4461.

[27] Niño-Martínez V.M.. "A

microservice deployment guide."

Programming and Computer Software

48.8 (2022): 632-645.

[28] Cornetta G.. "Design and evaluation

of a new machine learning framework

for iot and embedded devices."

Electronics (Switzerland) 10.5 (2021):

1-42.

[29] Stojilovic M.. "A visionary look at

the security of reconfigurable cloud

computing." Proceedings of the IEEE

111.12 (2023): 1548-1571.

[30] Chelliah P.R.. "Multi-cloud

adoption challenges for the cloud-native

era: best practices and solution

approaches." International Journal of

Cloud Applications and Computing 11.2

(2021): 67-96.

[31] Al-Doghman F.. "Ai-enabled secure

microservices in edge computing:

opportunities and challenges." IEEE

Transactions on Services Computing

16.2 (2023): 1485-1504.

[32] Delimitrou C.. "Bolt: i know what

you did last summer.. in the cloud."

ACM SIGPLAN Notices 52.4 (2017):

599-613.

