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Abstract  

Background: Fault Detection and Diagnosis (FDD) in robotic systems, particularly cleaning robots, is 

required for maintaining operational efficiency and reliability. Traditional FDD approaches, categorized as 

data-driven, model-based, and knowledge-based, have their individual strengths and limitations.  

Objective: This research proposes a novel Hybrid Adaptive FDD System, integrating the three traditional 

approaches to create a robust, efficient, and adaptive fault detection system for cleaning robots. 

Methods: The proposed system combines i) a data-driven layer utilizing machine learning algorithms, ii) 

a model-based layer employing a digital twin for performance comparison, and iii) a knowledge-based 

layer with a comprehensive database of common cleaning robot faults. An adaptive learning component 

is integral to the system, facilitating continuous learning and updating of the FDD algorithms and 

knowledge base. 

Experimental Setup: The system was implemented and tested on a fleet of cleaning robots in a controlled 

environment. The robots were equipped with various sensors to collect real-time operational data, which 

were then processed and analyzed by the proposed FDD system. 

Results: Experimental results demonstrate that the Hybrid Adaptive FDD System is capable of reliably 

detecting the presence of faults in cleaning robots. The system showed high accuracy in identifying 

anomalies in operational patterns, mechanical or software faults, and matched observed anomalies with 

known fault patterns effectively. 

Conclusion: The integration of data-driven, model-based, and knowledge-based approaches in a single 

FDD system ensures its applicability and effectiveness in dynamic operational environments. This research 

contributes to the field of robotic maintenance by providing an adaptive, and efficient solution for fault 

detection and diagnosis in cleaning robots. 

Keywords: Fault Detection and Diagnosis, Cleaning Robots, Hybrid System, Machine 

Learning, Digital Twin, Adaptive Learning
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Introduction  

Fault detection and diagnosis (FDD) is essential in maintaining the safety and reliability of a wide 

range of systems and processes in numerous industries. The value of FDD stems from its capacity 

to detect and correct system faults, which is vital for averting potential failures that might result 

in dangerous situations or the breakdown of systems. Given the complexity of contemporary 

systems, where various elements can lead to faults, the early identification and diagnosis of 

these faults are both challenging and critical [1]. FDD includes various methods and strategies 

that are specifically designed to identify and assess faults within the operational components or 

processes of a system. The introduction of sophisticated technologies like artificial intelligence, 

machine learning, and big data analytics has transformed the FDD. These advancements have 

significantly improved the precision and efficiency of fault prediction and diagnosis, changing 

the way maintenance and safety are addressed in sectors such as aerospace, nuclear power, and 

chemical processing, where the consequences of system failures can be particularly drastic. 

Historically, the role of FDD has been vital in applications where safety is of utmost importance, 

mirroring the pressing need for reliable performance in scenarios where failure could have 

catastrophic effects. In such environments, FDD systems are crafted to offer immediate, 

continuous monitoring and swift diagnostic solutions to promptly detect and resolve any 

irregularities or malfunctions [2]. This is noticeable in high-stakes industries like aviation and 

nuclear energy, where the consistent functioning of aircraft and the prevention of nuclear 

accidents heavily rely on robust FDD systems. These systems often merge sensor-based 

monitoring, model-based diagnostics, and rule-based logic to guarantee a thorough assessment 

of potential faults [3], [4]. The enduring emphasis on safety-critical applications has spurred the 

development of strict standards and practices for FDD systems, enhancing their dependability 

and efficacy in situations with high risks. This development has also eased the way for FDD's 

integration and application in a broader range of fields, spreading its benefits beyond its 

traditional safety-critical domains.  

The use of FDD has expanded considerably, moving past its initial focus to encompass an 

extensive array of contemporary and complex systems. This growth is mainly driven by the 

demands for heightened production efficiency and dependable operations in various sectors. 

Industries like manufacturing, renewable energy, and transportation are now increasingly 

employing FDD systems to improve their operational effectiveness, minimize operational 

interruptions, and reduce maintenance expenses. The role of FDD in these industries is dual-

natured: it not only enhances safety but also boosts operational efficiency. Implementing FDD 

in these domains typically involves a detailed combination of sensor technology, data analysis, 

and predictive maintenance practices. This approach encourages a proactive stance in managing 

faults, shifting from a reactive to a preventive maintenance perspective.  

The application of robotics and autonomous systems spans various sectors. These include self-

driving vehicles, monitoring systems, remote exploration, search and rescue, domestic robots, 

smart manufacturing, and advanced transport systems. These applications are critical for safety, 
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as any failure can pose serious risks to human safety and cause major infrastructure damage. 

For instance, a malfunction in an autonomous car on a crowded road can cause severe accidents, 

and a defect in a robotic surgical system might jeopardize a patient's life. The dependability and 

safety of these systems are crucial, particularly as they operate in complex, unpredictable 

environments where failure can have grave consequences. This necessitates thorough testing, 

solid design, and continuous monitoring to ensure their safety and effectiveness. 

Advanced systems are susceptible to a variety of issues. Wear and tear are inevitable aspects of 

their continual use. These machines can be adversely affected by environmental disturbances, 

which may include anything from extreme temperatures to unpredictable elements in their 

operating surroundings. Another significant challenge is failures in software control, which can 

arise from various causes such as programming errors or system malfunctions. These problems 

are concerning in environments where the machines are required to interact closely with 

humans or operate in areas that are sensitive or inherently hazardous. In such settings, any 

system degradation, caused by these vulnerabilities, can lead to serious and potentially 

disastrous outcomes. 

Table 1. Fault Classification in Cleaning Robots 

Fault Category Subcategories in 
Cleaning Robots 

Characteristics  

Hardware Faults Sensor malfunctions, 
Motor failures, Battery 
issues 

Related to physical components like 
navigation sensors, motor operation, or 
power supply issues 

Software Faults Navigation algorithm 
errors, User interface 
bugs 

Involves issues in the robot's software, 
affecting its pathfinding, task execution, 
or user interaction 

Networking and 
Communication 
Faults 

Wi-Fi connectivity 
problems, App 
synchronization issues 

Issues in receiving commands over 
networks or syncing with smartphone 
applications 

Transient Faults Temporary sensor 
misreads, Brief power 
fluctuations 

Short-term issues that resolve 
themselves, like momentarily incorrect 
sensor data or power dips 

Permanent Faults Broken components, 
Severed connections 

Long-term damages needing part 
replacement or repair, such as a broken 
wheel or a disconnected wiring 

Intermittent Faults Occasional sensor 
failures, Sporadic motor 
issues 

Faults that occur irregularly, like sensors 
that occasionally fail to detect obstacles 
or motors that intermittently jam 

Incipient Faults Gradual battery 
degradation, Wear and 
tear of brushes 

Slow-developing faults, like battery 
performance decreasing over time or 
brushes becoming less effective with 
wear 

Cleaning robots are susceptible to a range of faults that can impact their performance and 

longevity. These faults, often stemming from the complex interplay of mechanical, electrical, 

and software components, can lead to a decrease in cleaning efficiency, unexpected downtimes, 

and the need for frequent maintenance or repairs. Table 1 presents an overview of various fault 

categories in cleaning robots. The first category, hardware faults, includes issues such as sensor 
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malfunctions, motor failures, and battery issues. These faults are primarily related to the 

physical components of the robot, like navigation sensors, motor operation, or power supply 

issues, highlighting the challenges in the mechanical and electrical design of these robots. 

Software faults encompass navigation algorithm errors and user interface bugs. These faults are 

parts to the robot's software, impacting essential functions such as pathfinding, task execution, 

or user interaction, emphasizing the importance of robust software engineering in the 

development of cleaning robots. 

Networking and communication faults involve connectivity problems and app synchronization 

issues. This category is crucial in the context of smart homes, where robots are often integrated 

into a broader network of devices. Transient faults, such as temporary sensor misreads or brief 

power fluctuations, represent short-term issues that usually resolve themselves. In contrast, 

permanent faults like broken components or severed connections entail long-term damages 

that necessitate part replacement or repair. The table 1 also lists intermittent faults, including 

occasional sensor failures or sporadic motor issues, highlighting faults that occur irregularly and 

can be challenging to diagnose. Incipient faults like gradual battery degradation or wear and 

tear of brushes point to slow-developing issues that can affect the long-term performance and 

maintenance requirements of cleaning robots.  

Existing methods  

Fault Detection and Diagnosis (FDD) in robotic systems helps in maintaining optimal 

performance and ensuring reliability. Among the various methodologies currently employed, 

FDD approaches are broadly categorized into data-driven [5]–[7], model-based [8]–[10],  and 

knowledge-based techniques [11]–[13].  

The data-driven approaches in FDD are characterized by their model-free nature, relying heavily 

on the analysis of online data to identify deviations from normal behavior. These techniques do 

not presuppose any underlying model of the system but instead use historical data as a 

benchmark for comparison. A key method used in data-driven FDD is Principal Component 

Analysis (PCA), which serves to distill large datasets into a form that highlights significant 

patterns and anomalies. By analyzing the real-time data from robotic systems and comparing it 

against historical trends and patterns, data-driven methods can effectively differentiate 

between normal operational variations and potential faults. This approach is useful in complex 

systems where modeling every aspect of the system is impractical or impossible. The strength 

of data-driven FDD lies in its adaptability and its ability to handle large volumes of data, making 

it a useful method in modern, data-rich environments [14]. 

In contrast to data-driven approaches, model-based FDD methods are anchored in the use of 

analytical models that represent the expected behavior of the system's components. These 

models can be either quantitative or qualitative in nature [15], [16]. Quantitative models are 

built using mathematical equations that describe the functionality of the system's components 

in terms of physical laws and relationships. They are effective in systems where the behavior 

can be accurately captured through mathematical expressions. For example, in a robotic arm, 

the movement of each joint and limb can be mathematically modeled, and any deviation from 

the expected behavior can signal a fault. On the other hand, qualitative models use logic 

functions to describe the behavior of components, focusing on qualitative relations between 
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observed variables rather than precise numerical values. This approach is useful in systems 

where precise mathematical descriptions are challenging to formulate but where the logical 

relationships between different components and their behaviors are well-understood. In both 

cases, the comparison of expected outputs from the models with the observed outputs from 

the system allows for the detection and diagnosis of faults, making model-based FDD a powerful 

tool for systems where accurate models can be developed [17]. 

 

Table 2. Fault detection and diagnosis approaches in cleaning robots  

Category Approach Key Characteristics Example  

Data-Driven Model-
Free 

Uses online data for analysis [18], 

[19]. Relies on historical data for 

comparison. Employs methods like 

Principal Component Analysis. 

Adaptable to large volumes of data. 

Analyzing sensor data 
from a robotic vacuum 
to identify unusual 
patterns indicating a 
malfunction. 

Model-
Based 

Analytical 
Models 

Utilizes quantitative and qualitative 
models. Quantitative models use 
mathematical equations describing 
component functionality. Qualitative 
models use logic functions 
describing component behavior. 

Modeling the 
navigation algorithms of 
a robotic mop to detect 
deviations from 
expected pathing. 

Knowledge-
Based 

Expertise 
Database 

Associates observed behaviors with 
predefined known faults. Leverages 
accumulated expertise and historical 
knowledge. Effective for well-
documented faults with distinctive 
signatures. 

Referencing a database 
of common issues in 
robotic window 
cleaners for quick 
diagnosis of streaking 
patterns. 

 

Knowledge-based FDD approaches represent a different paradigm, relying on the association of 

observed behaviors with predefined known faults and diagnoses. These methods use the 

accumulated expertise and historical knowledge about the system, joining it in a format that can 

be used for fault detection. Knowledge-based FDD systems are built upon a database of known 

fault scenarios and their corresponding diagnostic information [20], [21]. When a robotic system 

exhibits certain behaviors or symptoms, the knowledge-based FDD system can reference its 

database to identify potential faults that have been previously recorded with similar symptoms 

[22]. This methodology excels when dealing with faults that have unique, recognizable patterns 

that align with pre-existing knowledge. The core advantage of knowledge-based FDD is its 

utilization of expert insights and historical records, rendering it especially useful in situations 

where faults are thoroughly documented and their symptoms are clear. However, its 

effectiveness is limited in the face of novel or unrecorded faults, which may not be readily 

identifiable through this method. 
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Proposed system   

The proposed Fault Detection and Diagnosis (FDD) in cleaning robots involves combines the 

strengths of data-driven, model-based, and knowledge-based approaches.  

 

System Overview 

The primary objective of this research is to develop a robust and adaptive Fault Detection and 

Diagnosis (FDD) system for cleaning robots, integrating the strengths of various approaches to 

ensure comprehensive fault analysis. The system aims to combine data analytics, model 

precision, and expert knowledge, creating a solution for real-time fault detection and diagnosis. 

This approach is designed to overcome the limitations inherent in singular-method FDD systems 

by using the predictive power of data-driven models, the accuracy of model-based analysis, and 

the depth of knowledge-based diagnostics. This integrated system is expected to yield a more 

efficient, reliable, and adaptive FDD system, capable of responding to the dynamic operational 

environments encountered by cleaning robots. The system's adaptability allows for continuous 

refinement and updating in response to new data and emerging fault patterns.  

To achieve this objective, the system was composed of several key components. At the forefront 

are various sensors strategically placed on the cleaning robots, tasked with the real-time 

collection of operational data. These sensors are used for monitoring the robots' performance 

and detecting any deviations from standard operational patterns, which could indicate potential 

faults. The collected data are then fed into a computational module, a data processing and 

analysis unit equipped with algorithms. This module is within the system, where real-time data 

is analyzed, and potential faults are identified. It utilizes a combination of machine learning 

techniques for anomaly detection and pattern recognition, ensuring accurate and timely fault 

diagnosis. Complementing these components is a comprehensive knowledge base, an extensive 

repository of information regarding common faults specific to cleaning robots. This database 

serves as a reference point for the system, allowing for quick identification of faults based on 

observed data patterns. 

Integrated Approach 

The data-driven layer of the proposed Fault Detection and Diagnosis (FDD) system is used in 

real-time analysis of the cleaning robots' operational data. Utilizing machine learning 

algorithms, this layer is specifically designed to process the vast amounts of data generated by 

the robots' sensors. The primary focus here is on identifying anomalies in the robots' operational 

patterns, which are often early indicators of potential faults. Techniques such as anomaly 

detection and time-series analysis are employed to sift through sensor data, looking for 

deviations from established normal operational behaviors. For instance, a sudden change in the 

robot's movement patterns or unexpected variations in sensor readings could signal a potential 

issue. This layer's strength lies in its ability to not only detect these anomalies but also to learn 

and adapt over time. As the system encounters new data and different operational scenarios, 

the machine learning models are continuously refined, enhancing their accuracy and reliability. 

This ongoing learning process ensures that the FDD system remains effective even as the robots' 

operating conditions change. 
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The model-based layer of the system introduces an approach to fault detection through the 

development of a digital twin [23]. This digital twin is essentially a virtual replica of the cleaning 

robot, simulating its ideal operational state and functionalities. By creating this parallel digital 

entity, the system can perform a continuous comparison between the expected performance of 

the robot and its actual operational data. This comparison is crucial in pinpointing discrepancies 

that may indicate mechanical or software faults. For example, if the digital twin predicts a 

certain battery life based on standard operation, but the actual robot shows a significantly 

reduced battery performance, the system can flag this as a potential battery-related fault. This 

layer's ability to provide a detailed, model-based analysis of the robot's performance is key to 

its precision in fault identification. The digital twin also offers a significant advantage in 

understanding complex interactions within the robot's systems, allowing for more accurate 

diagnosis of mechanical or software issues.  

Figure 1. The layers of the proposed system 
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The knowledge-based layer adds a dimension to the FDD system by incorporating a database of 

known faults specific to cleaning robots [24], [25]. This database includes a wide array of 

common issues such as brush malfunctions, navigation errors, sensor failures, and more. The 

strength of this layer lies in its rule-based logic, which is used to match observed anomalies in 

the robot's operation with the predefined fault patterns in the database. For instance, if the 

data-driven layer detects an irregularity in the robot's navigation, the knowledge-based layer 

can quickly cross-reference this observation with its database to identify if it matches a known 

navigation fault pattern. This approach greatly accelerates the fault diagnosis process, allowing 

for quicker and more accurate identification of the underlying issues. Additionally, this layer 

serves as a repository of accumulated knowledge, constantly updated with new fault patterns 

and diagnoses. This ensures that the proposed FDD system stays up-to-date with the latest 

developments and challenges in the field of cleaning robot maintenance.  

Adaptive Learning Component 

The Adaptive Learning Component of the proposed Fault Detection and Diagnosis (FDD) system 

embodies the essence of continuous improvement and evolution in line with the dynamic nature 

of robotic operations. This component is engineered to facilitate an ongoing learning process, 

where the system perpetually assimilates new data and experiences, thereby refining and 

enhancing its fault detection algorithms and the underlying knowledge base. The functionality 

of this component is deeply rooted in the principles of machine learning and artificial 

intelligence, enabling the system to not only identify and diagnose existing faults but also to 

anticipate and adapt to emerging fault patterns over time. 

As cleaning robots operate in varied and often changing environments, the ability of the FDD 

system to evolve with these changes is important. This evolution ensures that the system 

remains relevant and effective, irrespective of alterations in the robot’s operational 

environment or updates to its mechanical design. For instance, if a new type of flooring material 

presents unique challenges for the robot's navigation system, the adaptive learning component 

can quickly integrate data from these encounters, updating the system’s diagnostic criteria and 

responses accordingly. This adaptability extends to the detection of subtle, yet critical, shifts in 

the robot's performance parameters, allowing for proactive maintenance and preemptive fault 

resolution.  
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User Interface 

The design of the user interface in the proposed Fault Detection and Diagnosis (FDD) system is 

a critical aspect that bridges the gap between complex technological processes and practical, 

user-friendly application. At the heart of this interface is a dashboard designed with a focus on 

user experience, providing real-time alerts and comprehensive diagnostic information. The 

dashboard's layout and functionality were crafted to ensure clarity and ease of use, even for 

individuals not deeply versed in the technical intricacies of robotic systems. Real-time alerts are 

prominently displayed, ensuring that any potential faults are immediately brought to the 

attention of the operators. These alerts are accompanied by detailed diagnostic information, 

which elaborates on the nature of the detected anomaly, its potential impact on the robot's 

operation, and suggested corrective actions. The interface also includes visual aids such as 

graphs, diagrams, allowing users to visually track the robot's performance and the specifics of 

any diagnosed issues. 

The user-friendly dashboard helps operators and maintenance personnel to quickly 

comprehend and address any identified issues. This immediate understanding is crucial in 

operational environments where time is often a critical factor, and delays in addressing faults 

can lead to inefficiencies or even operational downtime. The dashboard serves as an interactive 

tool, allowing users to delve deeper into the specifics of each fault, examine historical data, and 

even predict potential future issues based on current trends. This level of interaction not only 

aids in quick resolution of immediate problems but also facilitates a deeper understanding of 

the robot's operational health over time. The ability to quickly address issues can reduce the 

likelihood of minor faults escalating into major breakdowns.  

Experimental Setup 

The robot configuration incorporated sensors and components to facilitate its operation. 

Ultrasonic Distance Sensors were integrated, boasting a detection range of up to 4 meters and 

a resolution of 0.5 cm, which were essential for precise obstacle detection and navigation. 

Gyroscopes were also included, with a sensitivity of ±0.01°/s, for monitoring the robot's 

orientation and balance. The robot featured Pressure Sensors in its cleaning pads, which had a 

sensitivity of 0.1 kPa to detect variations in contact force during cleaning operations. Infrared 

Sensors, offering a resolution of 1 cm and a range of up to 2 meters, were employed for surface 

detection. Lastly, Wheel Encoders were part of the setup, providing data with a resolution of 0.1 

mm per tick, allowing for accurate monitoring of wheel rotation and speed. 

The controlled environment for testing was a 100 square meter indoor space, segmented into 

different floor types including 30% carpet, 35% hardwood, and 35% tile. To simulate real-world 

conditions, obstacles of varying heights from 30 cm to 1 meter were placed at intervals of 1.5 

meters. Additionally, a 15-degree inclined plane, constituting 10% of the total area, was included 

to test the robots' adaptability. 

In terms of the algorithm and data processing, the neural network was trained on a dataset 

encompassing 10,000 hours of typical robot operation and known faults. The system processed 

sensor data at a rate of 10 samples per second to ensure real-time analysis and immediate 

anomaly detection. 
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The experimental procedure involved simulating faults such as a 20% reduction in wheel speed, 

sensor misalignments up to 5 degrees, and battery degradation leading to a 30% decrease in 

operation time. These faults were introduced in a staggered manner, with each robot 

experiencing one fault per testing phase, allowing for isolated assessment of the FDD system's 

response. 

The Data Collection and Analysis Methodology focused on quantifying the FDD system's 

detection accuracy, aiming for a threshold of 95% in identifying specific faults. The response 

time for fault detection was a critical measure, targeting less than 10 seconds from the 

occurrence of a fault. Diagnostic specificity was also evaluated to ensure the system could 

distinguish between different types of faults with at least 90% accuracy. 

 

 

 

 

 

Figure 2.  Experimental setup for the proposed cleaning robot FDD 

 

Results 

The experimental results from testing the Hybrid Adaptive Fault Detection and Diagnosis (FDD) 

System on a fleet of cleaning robots provided the following findings. The system utilized a 
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combination of Anomaly Detection Algorithms, including the Isolation Forest and One-Class 

Support Vector Machine (SVM), achieving an accuracy rate of 97.5% in detecting anomalies. This 

was determined by comparing the system's detections against a set of 200 known anomalies 

introduced during the testing phase. 

For mechanical faults, such as restricted wheel movement and sensor misalignment, the system 

used a Gaussian Mixture Model (GMM) for pattern recognition, attaining an accuracy of 95.8%. 

This was calculated over 150 mechanical fault instances, with the system correctly identifying 

144. In the case of software faults, including algorithmic errors and communication disruptions, 

the system employed a Time Series Analysis approach using Autoregressive Integrated Moving 

Average (ARIMA) models, resulting in a detection accuracy of 96.2% assessed over 100 

introduced software fault scenarios. 

The system matched observed anomalies with known fault patterns using a Deep Learning-

based Classification Algorithm, which included a Convolutional Neural Network (CNN) trained 

on a dataset of pre-recorded fault patterns. This matching process achieved a success rate of 

98.3%, indicating the system's capability in accurately categorizing anomalies into specific fault 

types. 

 

Figure 3. accuracies of different fault detection categories in the proposed Hybrid Adaptive Fault 

Detection and Diagnosis (FDD) System 

 

The average response time from the onset of a fault to its detection by the system was 12 

seconds, and the false alarm rate was maintained at a low 2.1%, illustrating the system's 

precision in distinguishing between normal operational variations and genuine faults. These 

results demonstrate the Hybrid Adaptive FDD System's advanced capabilities in reliably 

detecting a wide range of faults in cleaning robots, indicating its good performance in 

operational reliability and maintenance efficiency. 

Table 3. Results of the Hybrid Adaptive FDD System testing on cleaning robots. 

Aspect Details 

Accuracy in Anomaly Detection - Utilized Isolation Forest and One-Class SVM. 
- Achieved 97.5% accuracy against 200 known anomalies. 
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Mechanical Fault Detection - Employed Gaussian Mixture Model (GMM) for pattern 
recognition. 
- 95.8% accuracy over 150 mechanical faults. 

Software Fault Detection - Used Time Series Analysis with ARIMA models. 
- 96.2% accuracy for 100 software fault scenarios. 

Matching Known Fault Patterns - Deep Learning-based Classification with CNN. 
- 98.3% success rate in fault pattern matching. 

Response Time and False Alarm 
Rate 

- Average response time of 12 seconds. 
- Low false alarm rate of 2.1%. 

 

Conclusion  

Cleaning robots, operating in dynamic and often unpredictable environments, are susceptible 

to a range of operational faults, from mechanical wear and tear to software malfunctions. 

Traditional FDD approaches, while effective to a degree, often fall short in dealing with the 

complexities of modern robotic systems [26]. Data-driven methods, though adept at handling 

large volumes of operational data, may lack the deeper understanding of mechanical 

interactions. Model-based approaches provide this understanding but can be limited by their 

rigidity and inability to adapt to new data or environments. Knowledge-based systems, rich in 

domain-specific insights, may struggle with unforeseen faults outside their programmed 

knowledge. This gap in the capabilities of existing FDD systems highlights a pressing need for a 

more integrated and adaptive approach, one that not only detects and diagnoses faults 

efficiently but also evolves with the robots it is designed to maintain.  

Each of these 3 layers brings its own set of protocols, algorithms, and data processing 

requirements, which must be harmonized to function as a cohesive unit. The data-driven layer, 

reliant on machine learning algorithms, needs to seamlessly interact with the model-based 

layer's digital twin simulations and the rule-based logic of the knowledge-based layer. Achieving 

this integration demands design and software, ensuring that data flows smoothly between 

layers, and that the outputs from one layer accurately inform the processes in the next. This 

complexity is not merely technical but also conceptual, requiring a deep understanding of the 

diverse methodologies and their potential interactions. Overcoming this challenge is crucial for 

the system to function efficiently, enabling it to accurately detect and diagnose faults in real-

time. The integration must be robust yet flexible, allowing for future enhancements and 

adaptations.  

The aspect of data privacy and security presents a challenge in the implementation of the FDD 

system. Cleaning robots, equipped with sensors, continuously collect and transmit a vast 

amount of operational data. This data poses a risk if not properly secured. The potential for data 

breaches or unauthorized access is a concern, especially when sensitive information about the 

operational environments, which could include private or commercial spaces, is involved. 

Ensuring the security of this data requires the implementation of robust encryption protocols, 

secure data transmission channels, and stringent access controls. Moreover, compliance with 

data protection regulations, such as GDPR in the European Union or other regional privacy laws, 

should be followed. This challenge extends beyond the technicalities, encompassing legal and 

ethical considerations as well. Developing a system that not only effectively processes and 
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analyzes data for fault detection but also rigorously protects user privacy and data integrity is a 

balancing act that demands careful planning and execution. 

Developing a system that integrates machine learning algorithms, digital twin models, and a 

fault knowledge base requires significant investment in terms of both financial and human 

resources. The cost of developing the software, along with the necessary hardware upgrades for 

the cleaning robots to support the new system, could be substantial. Additionally, the system 

requires the expertise of professionals skilled in various domains, including robotics, data 

science, software engineering, and cybersecurity. For organizations looking to adopt this system, 

the initial investment could be a significant barrier. Therefore, demonstrating the long-term 

benefits, such as reduced maintenance costs, extended robot lifespans, and improved 

operational efficiency, is recommended to justify the initial resource allocation.  
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